//+build !noasm //+build !appengine //+build !gccgo // Copyright 2015, Klaus Post, see LICENSE for details. // Copyright 2019, Minio, Inc. package reedsolomon //go:noescape func _galMulAVX512Parallel82(in, out [][]byte, matrix *[matrixSize82]byte, addTo bool) //go:noescape func _galMulAVX512Parallel84(in, out [][]byte, matrix *[matrixSize84]byte, addTo bool) const ( dimIn = 8 // Number of input rows processed simultaneously dimOut82 = 2 // Number of output rows processed simultaneously for x2 routine dimOut84 = 4 // Number of output rows processed simultaneously for x4 routine matrixSize82 = (16 + 16) * dimIn * dimOut82 // Dimension of slice of matrix coefficient passed into x2 routine matrixSize84 = (16 + 16) * dimIn * dimOut84 // Dimension of slice of matrix coefficient passed into x4 routine ) // Construct block of matrix coefficients for 2 outputs rows in parallel func setupMatrix82(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize82]byte) { offset := 0 for c := inputOffset; c < inputOffset+dimIn; c++ { for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ { if c < len(matrixRows[iRow]) { coeff := matrixRows[iRow][c] copy(matrix[offset*32:], mulTableLow[coeff][:]) copy(matrix[offset*32+16:], mulTableHigh[coeff][:]) } else { // coefficients not used for this input shard (so null out) v := matrix[offset*32 : offset*32+32] for i := range v { v[i] = 0 } } offset += dimIn if offset >= dimIn*dimOut82 { offset -= dimIn*dimOut82 - 1 } } } } // Construct block of matrix coefficients for 4 outputs rows in parallel func setupMatrix84(matrixRows [][]byte, inputOffset, outputOffset int, matrix *[matrixSize84]byte) { offset := 0 for c := inputOffset; c < inputOffset+dimIn; c++ { for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ { if c < len(matrixRows[iRow]) { coeff := matrixRows[iRow][c] copy(matrix[offset*32:], mulTableLow[coeff][:]) copy(matrix[offset*32+16:], mulTableHigh[coeff][:]) } else { // coefficients not used for this input shard (so null out) v := matrix[offset*32 : offset*32+32] for i := range v { v[i] = 0 } } offset += dimIn if offset >= dimIn*dimOut84 { offset -= dimIn*dimOut84 - 1 } } } } // Invoke AVX512 routine for 2 output rows in parallel func galMulAVX512Parallel82(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) { done := len(in[0]) if done == 0 { return } inputEnd := inputOffset + dimIn if inputEnd > len(in) { inputEnd = len(in) } outputEnd := outputOffset + dimOut82 if outputEnd > len(out) { outputEnd = len(out) } matrix82 := [matrixSize82]byte{} setupMatrix82(matrixRows, inputOffset, outputOffset, &matrix82) addTo := inputOffset != 0 // Except for the first input column, add to previous results _galMulAVX512Parallel82(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix82, addTo) done = (done >> 6) << 6 if len(in[0])-done == 0 { return } for c := inputOffset; c < inputOffset+dimIn; c++ { for iRow := outputOffset; iRow < outputOffset+dimOut82; iRow++ { if c < len(matrixRows[iRow]) { mt := mulTable[matrixRows[iRow][c]] for i := done; i < len(in[0]); i++ { if c == 0 { // only set value for first input column out[iRow][i] = mt[in[c][i]] } else { // and add for all others out[iRow][i] ^= mt[in[c][i]] } } } } } } // Invoke AVX512 routine for 4 output rows in parallel func galMulAVX512Parallel84(in, out [][]byte, matrixRows [][]byte, inputOffset, outputOffset int) { done := len(in[0]) if done == 0 { return } inputEnd := inputOffset + dimIn if inputEnd > len(in) { inputEnd = len(in) } outputEnd := outputOffset + dimOut84 if outputEnd > len(out) { outputEnd = len(out) } matrix84 := [matrixSize84]byte{} setupMatrix84(matrixRows, inputOffset, outputOffset, &matrix84) addTo := inputOffset != 0 // Except for the first input column, add to previous results _galMulAVX512Parallel84(in[inputOffset:inputEnd], out[outputOffset:outputEnd], &matrix84, addTo) done = (done >> 6) << 6 if len(in[0])-done == 0 { return } for c := inputOffset; c < inputOffset+dimIn; c++ { for iRow := outputOffset; iRow < outputOffset+dimOut84; iRow++ { if c < len(matrixRows[iRow]) { mt := mulTable[matrixRows[iRow][c]] for i := done; i < len(in[0]); i++ { if c == 0 { // only set value for first input column out[iRow][i] = mt[in[c][i]] } else { // and add for all others out[iRow][i] ^= mt[in[c][i]] } } } } } } // Perform the same as codeSomeShards, but taking advantage of // AVX512 parallelism for up to 4x faster execution as compared to AVX2 func (r reedSolomon) codeSomeShardsAvx512(matrixRows, inputs, outputs [][]byte, outputCount, byteCount int) { outputRow := 0 // First process (multiple) batches of 4 output rows in parallel for ; outputRow+dimOut84 <= len(outputs); outputRow += dimOut84 { for inputRow := 0; inputRow < len(inputs); inputRow += dimIn { galMulAVX512Parallel84(inputs, outputs, matrixRows, inputRow, outputRow) } } // Then process a (single) batch of 2 output rows in parallel if outputRow+dimOut82 <= len(outputs) { // fmt.Println(outputRow, len(outputs)) for inputRow := 0; inputRow < len(inputs); inputRow += dimIn { galMulAVX512Parallel82(inputs, outputs, matrixRows, inputRow, outputRow) } outputRow += dimOut82 } // Lastly, we may have a single output row left (for uneven parity) if outputRow < len(outputs) { for c := 0; c < r.DataShards; c++ { if c == 0 { galMulSlice(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o) } else { galMulSliceXor(matrixRows[outputRow][c], inputs[c], outputs[outputRow], &r.o) } } } }