// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package cmd import ( "bytes" "context" "errors" "fmt" "io" "sync" "github.com/minio/madmin-go" "github.com/minio/minio/internal/logger" "github.com/minio/minio/internal/sync/errgroup" ) // Heals a bucket if it doesn't exist on one of the disks, additionally // also heals the missing entries for bucket metadata files // `policy.json, notification.xml, listeners.json`. func (er erasureObjects) HealBucket(ctx context.Context, bucket string, opts madmin.HealOpts) ( result madmin.HealResultItem, err error) { if !opts.DryRun { defer NSUpdated(bucket, slashSeparator) } storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // get write quorum for an object writeQuorum := len(storageDisks) - er.defaultParityCount if writeQuorum == er.defaultParityCount { writeQuorum++ } // Heal bucket. return healBucket(ctx, storageDisks, storageEndpoints, bucket, writeQuorum, opts) } // Heal bucket - create buckets on disks where it does not exist. func healBucket(ctx context.Context, storageDisks []StorageAPI, storageEndpoints []string, bucket string, writeQuorum int, opts madmin.HealOpts) (res madmin.HealResultItem, err error) { // Initialize sync waitgroup. g := errgroup.WithNErrs(len(storageDisks)) // Disk states slices beforeState := make([]string, len(storageDisks)) afterState := make([]string, len(storageDisks)) // Make a volume entry on all underlying storage disks. for index := range storageDisks { index := index g.Go(func() error { if storageDisks[index] == nil { beforeState[index] = madmin.DriveStateOffline afterState[index] = madmin.DriveStateOffline return errDiskNotFound } if _, serr := storageDisks[index].StatVol(ctx, bucket); serr != nil { if serr == errDiskNotFound { beforeState[index] = madmin.DriveStateOffline afterState[index] = madmin.DriveStateOffline return serr } if serr != errVolumeNotFound { beforeState[index] = madmin.DriveStateCorrupt afterState[index] = madmin.DriveStateCorrupt return serr } beforeState[index] = madmin.DriveStateMissing afterState[index] = madmin.DriveStateMissing // mutate only if not a dry-run if opts.DryRun { return nil } return serr } beforeState[index] = madmin.DriveStateOk afterState[index] = madmin.DriveStateOk return nil }, index) } errs := g.Wait() // Initialize heal result info res = madmin.HealResultItem{ Type: madmin.HealItemBucket, Bucket: bucket, DiskCount: len(storageDisks), ParityBlocks: len(storageDisks) / 2, DataBlocks: len(storageDisks) / 2, } for i := range beforeState { res.Before.Drives = append(res.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: beforeState[i], }) } reducedErr := reduceWriteQuorumErrs(ctx, errs, bucketOpIgnoredErrs, writeQuorum-1) if errors.Is(reducedErr, errVolumeNotFound) && !opts.Recreate { for i := range beforeState { res.After.Drives = append(res.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: madmin.DriveStateOk, }) } return res, nil } // Initialize sync waitgroup. g = errgroup.WithNErrs(len(storageDisks)) // Make a volume entry on all underlying storage disks. for index := range storageDisks { index := index g.Go(func() error { if beforeState[index] == madmin.DriveStateMissing { makeErr := storageDisks[index].MakeVol(ctx, bucket) if makeErr == nil { afterState[index] = madmin.DriveStateOk } return makeErr } return errs[index] }, index) } errs = g.Wait() reducedErr = reduceWriteQuorumErrs(ctx, errs, bucketOpIgnoredErrs, writeQuorum) if reducedErr != nil { return res, reducedErr } for i := range afterState { res.After.Drives = append(res.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: afterState[i], }) } return res, nil } // listAllBuckets lists all buckets from all disks. It also // returns the occurrence of each buckets in all disks func listAllBuckets(ctx context.Context, storageDisks []StorageAPI, healBuckets map[string]VolInfo) error { g := errgroup.WithNErrs(len(storageDisks)) var mu sync.Mutex for index := range storageDisks { index := index g.Go(func() error { if storageDisks[index] == nil { // we ignore disk not found errors return nil } volsInfo, err := storageDisks[index].ListVols(ctx) if err != nil { return err } for _, volInfo := range volsInfo { // StorageAPI can send volume names which are // incompatible with buckets - these are // skipped, like the meta-bucket. if isReservedOrInvalidBucket(volInfo.Name, false) { continue } mu.Lock() if _, ok := healBuckets[volInfo.Name]; !ok { healBuckets[volInfo.Name] = volInfo } mu.Unlock() } return nil }, index) } return reduceReadQuorumErrs(ctx, g.Wait(), bucketMetadataOpIgnoredErrs, len(storageDisks)/2) } // Only heal on disks where we are sure that healing is needed. We can expand // this list as and when we figure out more errors can be added to this list safely. func shouldHealObjectOnDisk(erErr, dataErr error, meta FileInfo, latestMeta FileInfo) bool { switch { case errors.Is(erErr, errFileNotFound) || errors.Is(erErr, errFileVersionNotFound): return true case errors.Is(erErr, errCorruptedFormat): return true } if erErr == nil { if !meta.Deleted && !meta.IsRemote() { // If xl.meta was read fine but there may be problem with the part.N files. if IsErr(dataErr, []error{ errFileNotFound, errFileVersionNotFound, errFileCorrupt, }...) { return true } } if !latestMeta.MetadataEquals(meta) { return true } if !latestMeta.TransitionInfoEquals(meta) { return true } if !latestMeta.ReplicationInfoEquals(meta) { return true } if !latestMeta.ModTime.Equal(meta.ModTime) { return true } if meta.XLV1 { return true } } return false } // Heals an object by re-writing corrupt/missing erasure blocks. func (er erasureObjects) healObject(ctx context.Context, bucket string, object string, versionID string, opts madmin.HealOpts) (result madmin.HealResultItem, err error) { if !opts.DryRun { defer NSUpdated(bucket, object) } dryRun := opts.DryRun scanMode := opts.ScanMode storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // Initialize heal result object result = madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, DiskCount: len(storageDisks), ParityBlocks: er.defaultParityCount, DataBlocks: len(storageDisks) - er.defaultParityCount, } if !opts.NoLock { lk := er.NewNSLock(bucket, object) lkctx, err := lk.GetLock(ctx, globalOperationTimeout) if err != nil { return result, err } ctx = lkctx.Context() defer lk.Unlock(lkctx.Cancel) } // Re-read when we have lock... partsMetadata, errs := readAllFileInfo(ctx, storageDisks, bucket, object, versionID, true) if _, err = getLatestFileInfo(ctx, partsMetadata, errs); err != nil { return er.purgeObjectDangling(ctx, bucket, object, versionID, partsMetadata, errs, []error{}, opts) } // List of disks having latest version of the object er.meta // (by modtime). _, modTime, dataDir := listOnlineDisks(storageDisks, partsMetadata, errs) // make sure all parts metadata dataDir is same as returned by listOnlineDisks() // the reason is its possible that some of the disks might have stale data, for those // we simply override them with maximally occurring 'dataDir' - this ensures that // disksWithAllParts() verifies same dataDir across all drives. for i := range partsMetadata { partsMetadata[i].DataDir = dataDir } // List of disks having all parts as per latest metadata. // NOTE: do not pass in latestDisks to diskWithAllParts since // the diskWithAllParts needs to reach the drive to ensure // validity of the metadata content, we should make sure that // we pass in disks as is for it to be verified. Once verified // the disksWithAllParts() returns the actual disks that can be // used here for reconstruction. This is done to ensure that // we do not skip drives that have inconsistent metadata to be // skipped from purging when they are stale. availableDisks, dataErrs := disksWithAllParts(ctx, storageDisks, partsMetadata, errs, bucket, object, scanMode) // Latest FileInfo for reference. If a valid metadata is not // present, it is as good as object not found. latestMeta, err := pickValidFileInfo(ctx, partsMetadata, modTime, dataDir, result.DataBlocks) if err != nil { return result, toObjectErr(err, bucket, object, versionID) } // Loop to find number of disks with valid data, per-drive // data state and a list of outdated disks on which data needs // to be healed. outDatedDisks := make([]StorageAPI, len(storageDisks)) numAvailableDisks := 0 disksToHealCount := 0 for i, v := range availableDisks { driveState := "" switch { case v != nil: driveState = madmin.DriveStateOk numAvailableDisks++ // If data is sane on any one disk, we can // extract the correct object size. result.ObjectSize = partsMetadata[i].Size if partsMetadata[i].Erasure.ParityBlocks > 0 && partsMetadata[i].Erasure.DataBlocks > 0 { result.ParityBlocks = partsMetadata[i].Erasure.ParityBlocks result.DataBlocks = partsMetadata[i].Erasure.DataBlocks } case errs[i] == errDiskNotFound, dataErrs[i] == errDiskNotFound: driveState = madmin.DriveStateOffline case errs[i] == errFileNotFound, errs[i] == errFileVersionNotFound, errs[i] == errVolumeNotFound: fallthrough case dataErrs[i] == errFileNotFound, dataErrs[i] == errFileVersionNotFound, dataErrs[i] == errVolumeNotFound: driveState = madmin.DriveStateMissing default: // all remaining cases imply corrupt data/metadata driveState = madmin.DriveStateCorrupt } if shouldHealObjectOnDisk(errs[i], dataErrs[i], partsMetadata[i], latestMeta) { outDatedDisks[i] = storageDisks[i] disksToHealCount++ result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: driveState, }) continue } result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[i], State: driveState, }) } if isAllNotFound(errs) { err = toObjectErr(errFileNotFound, bucket, object) if versionID != "" { err = toObjectErr(errFileVersionNotFound, bucket, object, versionID) } // File is fully gone, fileInfo is empty. return er.defaultHealResult(FileInfo{}, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } // If less than read quorum number of disks have all the parts // of the data, we can't reconstruct the erasure-coded data. if numAvailableDisks < result.DataBlocks { return er.purgeObjectDangling(ctx, bucket, object, versionID, partsMetadata, errs, dataErrs, opts) } if disksToHealCount == 0 { // Nothing to heal! return result, nil } // After this point, only have to repair data on disk - so // return if it is a dry-run if dryRun { return result, nil } cleanFileInfo := func(fi FileInfo) FileInfo { // Returns a copy of the 'fi' with checksums and parts nil'ed. nfi := fi if !fi.IsRemote() { nfi.Erasure.Index = 0 nfi.Erasure.Checksums = nil } return nfi } // We write at temporary location and then rename to final location. tmpID := mustGetUUID() migrateDataDir := mustGetUUID() copyPartsMetadata := make([]FileInfo, len(partsMetadata)) for i := range outDatedDisks { if outDatedDisks[i] == nil { continue } copyPartsMetadata[i] = partsMetadata[i] partsMetadata[i] = cleanFileInfo(latestMeta) } // source data dir shall be empty in case of XLV1 // differentiate it with dstDataDir for readability // srcDataDir is the one used with newBitrotReader() // to read existing content. srcDataDir := latestMeta.DataDir dstDataDir := latestMeta.DataDir if latestMeta.XLV1 { dstDataDir = migrateDataDir } var inlineBuffers []*bytes.Buffer if len(latestMeta.Parts) <= 1 && latestMeta.Size < smallFileThreshold { inlineBuffers = make([]*bytes.Buffer, len(outDatedDisks)) } // Reorder so that we have data disks first and parity disks next. latestDisks := shuffleDisks(availableDisks, latestMeta.Erasure.Distribution) outDatedDisks = shuffleDisks(outDatedDisks, latestMeta.Erasure.Distribution) partsMetadata = shufflePartsMetadata(partsMetadata, latestMeta.Erasure.Distribution) copyPartsMetadata = shufflePartsMetadata(copyPartsMetadata, latestMeta.Erasure.Distribution) if !latestMeta.Deleted && !latestMeta.IsRemote() { result.DataBlocks = latestMeta.Erasure.DataBlocks result.ParityBlocks = latestMeta.Erasure.ParityBlocks // Heal each part. erasureHealFile() will write the healed // part to .minio/tmp/uuid/ which needs to be renamed later to // the final location. erasure, err := NewErasure(ctx, latestMeta.Erasure.DataBlocks, latestMeta.Erasure.ParityBlocks, latestMeta.Erasure.BlockSize) if err != nil { return result, toObjectErr(err, bucket, object) } erasureInfo := latestMeta.Erasure bp := er.bp if erasureInfo.BlockSize == blockSizeV1 { bp = er.bpOld } for partIndex := 0; partIndex < len(latestMeta.Parts); partIndex++ { partSize := latestMeta.Parts[partIndex].Size partActualSize := latestMeta.Parts[partIndex].ActualSize partNumber := latestMeta.Parts[partIndex].Number tillOffset := erasure.ShardFileOffset(0, partSize, partSize) readers := make([]io.ReaderAt, len(latestDisks)) checksumAlgo := erasureInfo.GetChecksumInfo(partNumber).Algorithm for i, disk := range latestDisks { if disk == OfflineDisk { continue } checksumInfo := copyPartsMetadata[i].Erasure.GetChecksumInfo(partNumber) partPath := pathJoin(object, srcDataDir, fmt.Sprintf("part.%d", partNumber)) readers[i] = newBitrotReader(disk, partsMetadata[i].Data, bucket, partPath, tillOffset, checksumAlgo, checksumInfo.Hash, erasure.ShardSize()) } writers := make([]io.Writer, len(outDatedDisks)) for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } partPath := pathJoin(tmpID, dstDataDir, fmt.Sprintf("part.%d", partNumber)) if len(inlineBuffers) > 0 { inlineBuffers[i] = bytes.NewBuffer(make([]byte, 0, erasure.ShardFileSize(latestMeta.Size))) writers[i] = newStreamingBitrotWriterBuffer(inlineBuffers[i], DefaultBitrotAlgorithm, erasure.ShardSize()) } else { writers[i] = newBitrotWriter(disk, minioMetaTmpBucket, partPath, tillOffset, DefaultBitrotAlgorithm, erasure.ShardSize()) } } err = erasure.Heal(ctx, readers, writers, partSize, bp) closeBitrotReaders(readers) closeBitrotWriters(writers) if err != nil { return result, toObjectErr(err, bucket, object) } // outDatedDisks that had write errors should not be // written to for remaining parts, so we nil it out. for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } // A non-nil stale disk which did not receive // a healed part checksum had a write error. if writers[i] == nil { outDatedDisks[i] = nil disksToHealCount-- continue } partsMetadata[i].DataDir = dstDataDir partsMetadata[i].AddObjectPart(partNumber, "", partSize, partActualSize) partsMetadata[i].Erasure.AddChecksumInfo(ChecksumInfo{ PartNumber: partNumber, Algorithm: checksumAlgo, Hash: bitrotWriterSum(writers[i]), }) if len(inlineBuffers) > 0 && inlineBuffers[i] != nil { partsMetadata[i].Data = inlineBuffers[i].Bytes() } else { partsMetadata[i].Data = nil } } // If all disks are having errors, we give up. if disksToHealCount == 0 { return result, fmt.Errorf("all disks had write errors, unable to heal") } } } defer er.deleteObject(context.Background(), minioMetaTmpBucket, tmpID, len(storageDisks)/2+1) // Rename from tmp location to the actual location. for i, disk := range outDatedDisks { if disk == OfflineDisk { continue } // record the index of the updated disks partsMetadata[i].Erasure.Index = i + 1 // Attempt a rename now from healed data to final location. if err = disk.RenameData(ctx, minioMetaTmpBucket, tmpID, partsMetadata[i], bucket, object); err != nil { logger.LogIf(ctx, err) return result, toObjectErr(err, bucket, object) } // Remove any remaining parts from outdated disks from before transition. if partsMetadata[i].IsRemote() { rmDataDir := partsMetadata[i].DataDir disk.DeleteVol(ctx, pathJoin(bucket, encodeDirObject(object), rmDataDir), true) } for i, v := range result.Before.Drives { if v.Endpoint == disk.String() { result.After.Drives[i].State = madmin.DriveStateOk } } } // Set the size of the object in the heal result result.ObjectSize = latestMeta.Size return result, nil } // healObjectDir - heals object directory specifically, this special call // is needed since we do not have a special backend format for directories. func (er erasureObjects) healObjectDir(ctx context.Context, bucket, object string, dryRun bool, remove bool) (hr madmin.HealResultItem, err error) { storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // Initialize heal result object hr = madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, DiskCount: len(storageDisks), ParityBlocks: er.defaultParityCount, DataBlocks: len(storageDisks) - er.defaultParityCount, ObjectSize: 0, } hr.Before.Drives = make([]madmin.HealDriveInfo, len(storageDisks)) hr.After.Drives = make([]madmin.HealDriveInfo, len(storageDisks)) errs := statAllDirs(ctx, storageDisks, bucket, object) danglingObject := isObjectDirDangling(errs) if danglingObject { if !dryRun && remove { var wg sync.WaitGroup // Remove versions in bulk for each disk for index, disk := range storageDisks { if disk == nil { continue } wg.Add(1) go func(index int, disk StorageAPI) { defer wg.Done() _ = disk.Delete(ctx, bucket, object, false) }(index, disk) } wg.Wait() NSUpdated(bucket, object) } } // Prepare object creation in all disks for i, err := range errs { drive := storageEndpoints[i] switch err { case nil: hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateOk} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateOk} case errDiskNotFound: hr.Before.Drives[i] = madmin.HealDriveInfo{State: madmin.DriveStateOffline} hr.After.Drives[i] = madmin.HealDriveInfo{State: madmin.DriveStateOffline} case errVolumeNotFound, errFileNotFound: // Bucket or prefix/directory not found hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateMissing} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateMissing} default: hr.Before.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateCorrupt} hr.After.Drives[i] = madmin.HealDriveInfo{Endpoint: drive, State: madmin.DriveStateCorrupt} } } if dryRun || danglingObject || isAllNotFound(errs) { // Nothing to do, file is already gone. return hr, toObjectErr(errFileNotFound, bucket, object) } for i, err := range errs { if err == errVolumeNotFound || err == errFileNotFound { // Bucket or prefix/directory not found merr := storageDisks[i].MakeVol(ctx, pathJoin(bucket, object)) switch merr { case nil, errVolumeExists: hr.After.Drives[i].State = madmin.DriveStateOk case errDiskNotFound: hr.After.Drives[i].State = madmin.DriveStateOffline default: logger.LogIf(ctx, merr) hr.After.Drives[i].State = madmin.DriveStateCorrupt } } } return hr, nil } // Populates default heal result item entries with possible values when we are returning prematurely. // This is to ensure that in any circumstance we are not returning empty arrays with wrong values. func (er erasureObjects) defaultHealResult(lfi FileInfo, storageDisks []StorageAPI, storageEndpoints []string, errs []error, bucket, object, versionID string) madmin.HealResultItem { // Initialize heal result object result := madmin.HealResultItem{ Type: madmin.HealItemObject, Bucket: bucket, Object: object, ObjectSize: lfi.Size, VersionID: versionID, DiskCount: len(storageDisks), } if lfi.IsValid() { result.ParityBlocks = lfi.Erasure.ParityBlocks } else { // Default to most common configuration for erasure blocks. result.ParityBlocks = er.defaultParityCount } result.DataBlocks = len(storageDisks) - result.ParityBlocks for index, disk := range storageDisks { if disk == nil { result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index], State: madmin.DriveStateOffline, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index], State: madmin.DriveStateOffline, }) continue } driveState := madmin.DriveStateCorrupt switch errs[index] { case errFileNotFound, errVolumeNotFound: driveState = madmin.DriveStateMissing case nil: driveState = madmin.DriveStateOk } result.Before.Drives = append(result.Before.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index], State: driveState, }) result.After.Drives = append(result.After.Drives, madmin.HealDriveInfo{ UUID: "", Endpoint: storageEndpoints[index], State: driveState, }) } return result } // Stat all directories. func statAllDirs(ctx context.Context, storageDisks []StorageAPI, bucket, prefix string) []error { g := errgroup.WithNErrs(len(storageDisks)) for index, disk := range storageDisks { if disk == nil { continue } index := index g.Go(func() error { entries, err := storageDisks[index].ListDir(ctx, bucket, prefix, 1) if err != nil { return err } if len(entries) > 0 { return errVolumeNotEmpty } return nil }, index) } return g.Wait() } // isAllNotFound will return if any element of the error slice is not // errFileNotFound, errFileVersionNotFound or errVolumeNotFound. // A 0 length slice will always return false. func isAllNotFound(errs []error) bool { for _, err := range errs { if errors.Is(err, errFileNotFound) || errors.Is(err, errVolumeNotFound) || errors.Is(err, errFileVersionNotFound) { continue } return false } return len(errs) > 0 } // ObjectDir is considered dangling/corrupted if any only // if total disks - a combination of corrupted and missing // files is lesser than N/2+1 number of disks. // If no files were found false will be returned. func isObjectDirDangling(errs []error) (ok bool) { var found int var notFound int var foundNotEmpty int var otherFound int for _, readErr := range errs { if readErr == nil { found++ } else if readErr == errFileNotFound || readErr == errVolumeNotFound { notFound++ } else if readErr == errVolumeNotEmpty { foundNotEmpty++ } else { otherFound++ } } found = found + foundNotEmpty + otherFound return found < notFound && found > 0 } func (er erasureObjects) purgeObjectDangling(ctx context.Context, bucket, object, versionID string, metaArr []FileInfo, errs []error, dataErrs []error, opts madmin.HealOpts) (madmin.HealResultItem, error) { storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // Check if the object is dangling, if yes and user requested // remove we simply delete it from namespace. m, ok := isObjectDangling(metaArr, errs, dataErrs) if ok { parityBlocks := m.Erasure.ParityBlocks if m.Erasure.ParityBlocks == 0 { parityBlocks = er.defaultParityCount } dataBlocks := m.Erasure.DataBlocks if m.Erasure.DataBlocks == 0 { dataBlocks = len(storageDisks) - parityBlocks } writeQuorum := dataBlocks if dataBlocks == parityBlocks { writeQuorum++ } var err error var returnNotFound bool if !opts.DryRun && opts.Remove { err = er.deleteObjectVersion(ctx, bucket, object, writeQuorum, FileInfo{ VersionID: versionID, }, false) // If Delete was successful, make sure to return the appropriate error // and heal result appropriate with delete's error messages errs = make([]error, len(errs)) for i := range errs { errs[i] = err } if err == nil { // Dangling object successfully purged, size is '0' m.Size = 0 } // Delete successfully purged dangling content, return ObjectNotFound/VersionNotFound instead. if countErrs(errs, nil) == len(errs) { returnNotFound = true } } if returnNotFound { err = toObjectErr(errFileNotFound, bucket, object) if versionID != "" { err = toObjectErr(errFileVersionNotFound, bucket, object, versionID) } return er.defaultHealResult(m, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } return er.defaultHealResult(m, storageDisks, storageEndpoints, errs, bucket, object, versionID), toObjectErr(err, bucket, object, versionID) } readQuorum := len(storageDisks) - er.defaultParityCount err := toObjectErr(reduceReadQuorumErrs(ctx, errs, objectOpIgnoredErrs, readQuorum), bucket, object, versionID) return er.defaultHealResult(m, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } // Object is considered dangling/corrupted if any only // if total disks - a combination of corrupted and missing // files is lesser than number of data blocks. func isObjectDangling(metaArr []FileInfo, errs []error, dataErrs []error) (validMeta FileInfo, ok bool) { // We can consider an object data not reliable // when er.meta is not found in read quorum disks. // or when er.meta is not readable in read quorum disks. var notFoundErasureMeta, corruptedErasureMeta int for _, readErr := range errs { if errors.Is(readErr, errFileNotFound) || errors.Is(readErr, errFileVersionNotFound) { notFoundErasureMeta++ } else if errors.Is(readErr, errCorruptedFormat) { corruptedErasureMeta++ } } var notFoundParts int for i := range dataErrs { // Only count part errors, if the error is not // same as er.meta error. This is to avoid // double counting when both parts and er.meta // are not available. if errs[i] != dataErrs[i] { if IsErr(dataErrs[i], []error{ errFileNotFound, errFileVersionNotFound, }...) { notFoundParts++ } } } for _, m := range metaArr { if !m.IsValid() { continue } validMeta = m break } if validMeta.Deleted || validMeta.IsRemote() { // notFoundParts is ignored since a // - delete marker does not have any parts // - transition status of complete has no parts return validMeta, corruptedErasureMeta+notFoundErasureMeta > len(errs)/2 } // We couldn't find any valid meta we are indeed corrupted, return true right away. if validMeta.Erasure.DataBlocks == 0 { return validMeta, true } // We have valid meta, now verify if we have enough files with parity blocks. return validMeta, corruptedErasureMeta+notFoundErasureMeta+notFoundParts > validMeta.Erasure.ParityBlocks } // HealObject - heal the given object, automatically deletes the object if stale/corrupted if `remove` is true. func (er erasureObjects) HealObject(ctx context.Context, bucket, object, versionID string, opts madmin.HealOpts) (hr madmin.HealResultItem, err error) { // Create context that also contains information about the object and bucket. // The top level handler might not have this information. reqInfo := logger.GetReqInfo(ctx) var newReqInfo *logger.ReqInfo if reqInfo != nil { newReqInfo = logger.NewReqInfo(reqInfo.RemoteHost, reqInfo.UserAgent, reqInfo.DeploymentID, reqInfo.RequestID, reqInfo.API, bucket, object) } else { newReqInfo = logger.NewReqInfo("", "", globalDeploymentID, "", "Heal", bucket, object) } healCtx := logger.SetReqInfo(GlobalContext, newReqInfo) // Healing directories handle it separately. if HasSuffix(object, SlashSeparator) { return er.healObjectDir(healCtx, bucket, object, opts.DryRun, opts.Remove) } storageDisks := er.getDisks() storageEndpoints := er.getEndpoints() // When versionID is empty, we read directly from the `null` versionID for healing. if versionID == "" { versionID = nullVersionID } // Perform quick read without lock. // This allows to quickly check if all is ok or all are missing. _, errs := readAllFileInfo(healCtx, storageDisks, bucket, object, versionID, false) if isAllNotFound(errs) { err = toObjectErr(errFileNotFound, bucket, object) if versionID != "" { err = toObjectErr(errFileVersionNotFound, bucket, object, versionID) } // Nothing to do, file is already gone. return er.defaultHealResult(FileInfo{}, storageDisks, storageEndpoints, errs, bucket, object, versionID), err } // Heal the object. return er.healObject(healCtx, bucket, object, versionID, opts) }