// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
package cmd
import (
"bytes"
"context"
"encoding/hex"
"errors"
"fmt"
"io"
"math/rand"
"net"
"net/http"
"path"
"runtime"
"strconv"
"strings"
"sync"
"time"
"unicode/utf8"
"github.com/google/uuid"
"github.com/klauspost/compress/s2"
"github.com/klauspost/readahead"
"github.com/minio/minio-go/v7/pkg/s3utils"
"github.com/minio/minio/internal/config/compress"
"github.com/minio/minio/internal/config/dns"
"github.com/minio/minio/internal/config/storageclass"
"github.com/minio/minio/internal/crypto"
"github.com/minio/minio/internal/hash"
xhttp "github.com/minio/minio/internal/http"
"github.com/minio/minio/internal/ioutil"
"github.com/minio/minio/internal/logger"
"github.com/minio/pkg/trie"
"github.com/minio/pkg/wildcard"
"golang.org/x/exp/slices"
)
const (
// MinIO meta bucket.
minioMetaBucket = ".minio.sys"
// Multipart meta prefix.
mpartMetaPrefix = "multipart"
// MinIO Multipart meta prefix.
minioMetaMultipartBucket = minioMetaBucket + SlashSeparator + mpartMetaPrefix
// MinIO tmp meta prefix.
minioMetaTmpBucket = minioMetaBucket + "/tmp"
// MinIO tmp meta prefix for deleted objects.
minioMetaTmpDeletedBucket = minioMetaTmpBucket + "/.trash"
// DNS separator (period), used for bucket name validation.
dnsDelimiter = "."
// On compressed files bigger than this;
compReadAheadSize = 100 << 20
// Read this many buffers ahead.
compReadAheadBuffers = 5
// Size of each buffer.
compReadAheadBufSize = 1 << 20
// Pad Encrypted+Compressed files to a multiple of this.
compPadEncrypted = 256
// Disable compressed file indices below this size
compMinIndexSize = 8 << 20
)
// isMinioBucket returns true if given bucket is a MinIO internal
// bucket and false otherwise.
func isMinioMetaBucketName(bucket string) bool {
return strings.HasPrefix(bucket, minioMetaBucket)
}
// IsValidBucketName verifies that a bucket name is in accordance with
// Amazon's requirements (i.e. DNS naming conventions). It must be 3-63
// characters long, and it must be a sequence of one or more labels
// separated by periods. Each label can contain lowercase ascii
// letters, decimal digits and hyphens, but must not begin or end with
// a hyphen. See:
// http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
func IsValidBucketName(bucket string) bool {
// Special case when bucket is equal to one of the meta buckets.
if isMinioMetaBucketName(bucket) {
return true
}
if len(bucket) < 3 || len(bucket) > 63 {
return false
}
// Split on dot and check each piece conforms to rules.
allNumbers := true
pieces := strings.Split(bucket, dnsDelimiter)
for _, piece := range pieces {
if len(piece) == 0 || piece[0] == '-' ||
piece[len(piece)-1] == '-' {
// Current piece has 0-length or starts or
// ends with a hyphen.
return false
}
// Now only need to check if each piece is a valid
// 'label' in AWS terminology and if the bucket looks
// like an IP address.
isNotNumber := false
for i := 0; i < len(piece); i++ {
switch {
case (piece[i] >= 'a' && piece[i] <= 'z' ||
piece[i] == '-'):
// Found a non-digit character, so
// this piece is not a number.
isNotNumber = true
case piece[i] >= '0' && piece[i] <= '9':
// Nothing to do.
default:
// Found invalid character.
return false
}
}
allNumbers = allNumbers && !isNotNumber
}
// Does the bucket name look like an IP address?
return !(len(pieces) == 4 && allNumbers)
}
// IsValidObjectName verifies an object name in accordance with Amazon's
// requirements. It cannot exceed 1024 characters and must be a valid UTF8
// string.
//
// See:
// http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
//
// You should avoid the following characters in a key name because of
// significant special handling for consistency across all
// applications.
//
// Rejects strings with following characters.
//
// - Backslash ("\")
//
// additionally minio does not support object names with trailing SlashSeparator.
func IsValidObjectName(object string) bool {
if len(object) == 0 {
return false
}
if HasSuffix(object, SlashSeparator) {
return false
}
return IsValidObjectPrefix(object)
}
// IsValidObjectPrefix verifies whether the prefix is a valid object name.
// Its valid to have a empty prefix.
func IsValidObjectPrefix(object string) bool {
if hasBadPathComponent(object) {
return false
}
if !utf8.ValidString(object) {
return false
}
if strings.Contains(object, `//`) {
return false
}
// This is valid for AWS S3 but it will never
// work with file systems, we will reject here
// to return object name invalid rather than
// a cryptic error from the file system.
return !strings.ContainsRune(object, 0)
}
// checkObjectNameForLengthAndSlash -check for the validity of object name length and prefis as slash
func checkObjectNameForLengthAndSlash(bucket, object string) error {
// Check for the length of object name
if len(object) > 1024 {
return ObjectNameTooLong{
Bucket: bucket,
Object: object,
}
}
// Check for slash as prefix in object name
if HasPrefix(object, SlashSeparator) {
return ObjectNamePrefixAsSlash{
Bucket: bucket,
Object: object,
}
}
if runtime.GOOS == globalWindowsOSName {
// Explicitly disallowed characters on windows.
// Avoids most problematic names.
if strings.ContainsAny(object, `\:*?"|<>`) {
return ObjectNameInvalid{
Bucket: bucket,
Object: object,
}
}
}
return nil
}
// SlashSeparator - slash separator.
const SlashSeparator = "/"
// SlashSeparatorChar - slash separator.
const SlashSeparatorChar = '/'
// retainSlash - retains slash from a path.
func retainSlash(s string) string {
if s == "" {
return s
}
return strings.TrimSuffix(s, SlashSeparator) + SlashSeparator
}
// pathsJoinPrefix - like pathJoin retains trailing SlashSeparator
// for all elements, prepends them with 'prefix' respectively.
func pathsJoinPrefix(prefix string, elem ...string) (paths []string) {
paths = make([]string, len(elem))
for i, e := range elem {
paths[i] = pathJoin(prefix, e)
}
return paths
}
// pathJoin - like path.Join() but retains trailing SlashSeparator of the last element
func pathJoin(elem ...string) string {
trailingSlash := ""
if len(elem) > 0 {
if hasSuffixByte(elem[len(elem)-1], SlashSeparatorChar) {
trailingSlash = SlashSeparator
}
}
return path.Join(elem...) + trailingSlash
}
// pathJoinBuf - like path.Join() but retains trailing SlashSeparator of the last element.
// Provide a string builder to reduce allocation.
func pathJoinBuf(dst *bytes.Buffer, elem ...string) string {
trailingSlash := len(elem) > 0 && hasSuffixByte(elem[len(elem)-1], SlashSeparatorChar)
dst.Reset()
added := 0
for _, e := range elem {
if added > 0 || e != "" {
if added > 0 {
dst.WriteRune(SlashSeparatorChar)
}
dst.WriteString(e)
added += len(e)
}
}
if pathNeedsClean(dst.Bytes()) {
s := path.Clean(dst.String())
if trailingSlash {
return s + SlashSeparator
}
return s
}
if trailingSlash {
dst.WriteRune(SlashSeparatorChar)
}
return dst.String()
}
// hasSuffixByte returns true if the last byte of s is 'suffix'
func hasSuffixByte(s string, suffix byte) bool {
return len(s) > 0 && s[len(s)-1] == suffix
}
// pathNeedsClean returns whether path.Clean may change the path.
// Will detect all cases that will be cleaned,
// but may produce false positives on non-trivial paths.
func pathNeedsClean(path []byte) bool {
if len(path) == 0 {
return true
}
rooted := path[0] == '/'
n := len(path)
r, w := 0, 0
if rooted {
r, w = 1, 1
}
for r < n {
switch {
case path[r] > 127:
// Non ascii.
return true
case path[r] == '/':
// multiple / elements
return true
case path[r] == '.' && (r+1 == n || path[r+1] == '/'):
// . element - assume it has to be cleaned.
return true
case path[r] == '.' && path[r+1] == '.' && (r+2 == n || path[r+2] == '/'):
// .. element: remove to last / - assume it has to be cleaned.
return true
default:
// real path element.
// add slash if needed
if rooted && w != 1 || !rooted && w != 0 {
w++
}
// copy element
for ; r < n && path[r] != '/'; r++ {
w++
}
// allow one slash, not at end
if r < n-1 && path[r] == '/' {
r++
}
}
}
// Turn empty string into "."
if w == 0 {
return true
}
return false
}
// mustGetUUID - get a random UUID.
func mustGetUUID() string {
u, err := uuid.NewRandom()
if err != nil {
logger.CriticalIf(GlobalContext, err)
}
return u.String()
}
// Create an s3 compatible MD5sum for complete multipart transaction.
func getCompleteMultipartMD5(parts []CompletePart) string {
var finalMD5Bytes []byte
for _, part := range parts {
md5Bytes, err := hex.DecodeString(canonicalizeETag(part.ETag))
if err != nil {
finalMD5Bytes = append(finalMD5Bytes, []byte(part.ETag)...)
} else {
finalMD5Bytes = append(finalMD5Bytes, md5Bytes...)
}
}
s3MD5 := fmt.Sprintf("%s-%d", getMD5Hash(finalMD5Bytes), len(parts))
return s3MD5
}
// Clean unwanted fields from metadata
func cleanMetadata(metadata map[string]string) map[string]string {
// Remove STANDARD StorageClass
metadata = removeStandardStorageClass(metadata)
// Clean meta etag keys 'md5Sum', 'etag', "expires", "x-amz-tagging".
return cleanMetadataKeys(metadata, "md5Sum", "etag", "expires", xhttp.AmzObjectTagging, "last-modified", VersionPurgeStatusKey)
}
// Filter X-Amz-Storage-Class field only if it is set to STANDARD.
// This is done since AWS S3 doesn't return STANDARD Storage class as response header.
func removeStandardStorageClass(metadata map[string]string) map[string]string {
if metadata[xhttp.AmzStorageClass] == storageclass.STANDARD {
delete(metadata, xhttp.AmzStorageClass)
}
return metadata
}
// cleanMetadataKeys takes keyNames to be filtered
// and returns a new map with all the entries with keyNames removed.
func cleanMetadataKeys(metadata map[string]string, keyNames ...string) map[string]string {
newMeta := make(map[string]string, len(metadata))
for k, v := range metadata {
if slices.Contains(keyNames, k) {
continue
}
newMeta[k] = v
}
return newMeta
}
// Extracts etag value from the metadata.
func extractETag(metadata map[string]string) string {
etag, ok := metadata["etag"]
if !ok {
// md5Sum tag is kept for backward compatibility.
etag = metadata["md5Sum"]
}
// Success.
return etag
}
// HasPrefix - Prefix matcher string matches prefix in a platform specific way.
// For example on windows since its case insensitive we are supposed
// to do case insensitive checks.
func HasPrefix(s string, prefix string) bool {
if runtime.GOOS == globalWindowsOSName {
return stringsHasPrefixFold(s, prefix)
}
return strings.HasPrefix(s, prefix)
}
// HasSuffix - Suffix matcher string matches suffix in a platform specific way.
// For example on windows since its case insensitive we are supposed
// to do case insensitive checks.
func HasSuffix(s string, suffix string) bool {
if runtime.GOOS == globalWindowsOSName {
return strings.HasSuffix(strings.ToLower(s), strings.ToLower(suffix))
}
return strings.HasSuffix(s, suffix)
}
// Validates if two strings are equal.
func isStringEqual(s1 string, s2 string) bool {
if runtime.GOOS == globalWindowsOSName {
return strings.EqualFold(s1, s2)
}
return s1 == s2
}
// Ignores all reserved bucket names or invalid bucket names.
func isReservedOrInvalidBucket(bucketEntry string, strict bool) bool {
if bucketEntry == "" {
return true
}
bucketEntry = strings.TrimSuffix(bucketEntry, SlashSeparator)
if strict {
if err := s3utils.CheckValidBucketNameStrict(bucketEntry); err != nil {
return true
}
} else {
if err := s3utils.CheckValidBucketName(bucketEntry); err != nil {
return true
}
}
return isMinioMetaBucket(bucketEntry) || isMinioReservedBucket(bucketEntry)
}
// Returns true if input bucket is a reserved minio meta bucket '.minio.sys'.
func isMinioMetaBucket(bucketName string) bool {
return bucketName == minioMetaBucket
}
// Returns true if input bucket is a reserved minio bucket 'minio'.
func isMinioReservedBucket(bucketName string) bool {
return bucketName == minioReservedBucket
}
// returns a slice of hosts by reading a slice of DNS records
func getHostsSlice(records []dns.SrvRecord) []string {
hosts := make([]string, len(records))
for i, r := range records {
hosts[i] = net.JoinHostPort(r.Host, string(r.Port))
}
return hosts
}
// returns an online host (and corresponding port) from a slice of DNS records
func getHostFromSrv(records []dns.SrvRecord) (host string) {
hosts := getHostsSlice(records)
rng := rand.New(rand.NewSource(time.Now().UTC().UnixNano()))
var d net.Dialer
var retry int
for retry < len(hosts) {
ctx, cancel := context.WithTimeout(GlobalContext, 300*time.Millisecond)
host = hosts[rng.Intn(len(hosts))]
conn, err := d.DialContext(ctx, "tcp", host)
cancel()
if err != nil {
retry++
continue
}
conn.Close()
break
}
return host
}
// IsCompressed returns true if the object is marked as compressed.
func (o *ObjectInfo) IsCompressed() bool {
_, ok := o.UserDefined[ReservedMetadataPrefix+"compression"]
return ok
}
// IsCompressedOK returns whether the object is compressed and can be decompressed.
func (o *ObjectInfo) IsCompressedOK() (bool, error) {
scheme, ok := o.UserDefined[ReservedMetadataPrefix+"compression"]
if !ok {
return false, nil
}
switch scheme {
case compressionAlgorithmV1, compressionAlgorithmV2:
return true, nil
}
return true, fmt.Errorf("unknown compression scheme: %s", scheme)
}
// GetActualSize - returns the actual size of the stored object
func (o *ObjectInfo) GetActualSize() (int64, error) {
if o.IsCompressed() {
sizeStr, ok := o.UserDefined[ReservedMetadataPrefix+"actual-size"]
if !ok {
return -1, errInvalidDecompressedSize
}
size, err := strconv.ParseInt(sizeStr, 10, 64)
if err != nil {
return -1, errInvalidDecompressedSize
}
return size, nil
}
if _, ok := crypto.IsEncrypted(o.UserDefined); ok {
return o.DecryptedSize()
}
return o.Size, nil
}
// Disabling compression for encrypted enabled requests.
// Using compression and encryption together enables room for side channel attacks.
// Eliminate non-compressible objects by extensions/content-types.
func isCompressible(header http.Header, object string) bool {
globalCompressConfigMu.Lock()
cfg := globalCompressConfig
globalCompressConfigMu.Unlock()
return !excludeForCompression(header, object, cfg)
}
// Eliminate the non-compressible objects.
func excludeForCompression(header http.Header, object string, cfg compress.Config) bool {
objStr := object
contentType := header.Get(xhttp.ContentType)
if !cfg.Enabled {
return true
}
if crypto.Requested(header) && !cfg.AllowEncrypted {
return true
}
// We strictly disable compression for standard extensions/content-types (`compressed`).
if hasStringSuffixInSlice(objStr, standardExcludeCompressExtensions) || hasPattern(standardExcludeCompressContentTypes, contentType) {
return true
}
// Filter compression includes.
exclude := len(cfg.Extensions) > 0 || len(cfg.MimeTypes) > 0
if len(cfg.Extensions) > 0 && hasStringSuffixInSlice(objStr, cfg.Extensions) {
exclude = false
}
if len(cfg.MimeTypes) > 0 && hasPattern(cfg.MimeTypes, contentType) {
exclude = false
}
return exclude
}
// Utility which returns if a string is present in the list.
// Comparison is case insensitive.
func hasStringSuffixInSlice(str string, list []string) bool {
str = strings.ToLower(str)
for _, v := range list {
if strings.HasSuffix(str, strings.ToLower(v)) {
return true
}
}
return false
}
// Returns true if any of the given wildcard patterns match the matchStr.
func hasPattern(patterns []string, matchStr string) bool {
for _, pattern := range patterns {
if ok := wildcard.MatchSimple(pattern, matchStr); ok {
return true
}
}
return false
}
// Returns the part file name which matches the partNumber and etag.
func getPartFile(entriesTrie *trie.Trie, partNumber int, etag string) (partFile string) {
for _, match := range entriesTrie.PrefixMatch(fmt.Sprintf("%.5d.%s.", partNumber, etag)) {
partFile = match
break
}
return partFile
}
func partNumberToRangeSpec(oi ObjectInfo, partNumber int) *HTTPRangeSpec {
if oi.Size == 0 || len(oi.Parts) == 0 {
return nil
}
var start int64
end := int64(-1)
for i := 0; i < len(oi.Parts) && i < partNumber; i++ {
start = end + 1
end = start + oi.Parts[i].ActualSize - 1
}
return &HTTPRangeSpec{Start: start, End: end}
}
// Returns the compressed offset which should be skipped.
// If encrypted offsets are adjusted for encrypted block headers/trailers.
// Since de-compression is after decryption encryption overhead is only added to compressedOffset.
func getCompressedOffsets(oi ObjectInfo, offset int64, decrypt func([]byte) ([]byte, error)) (compressedOffset int64, partSkip int64, firstPart int, decryptSkip int64, seqNum uint32) {
var skipLength int64
var cumulativeActualSize int64
var firstPartIdx int
if len(oi.Parts) > 0 {
for i, part := range oi.Parts {
cumulativeActualSize += part.ActualSize
if cumulativeActualSize <= offset {
compressedOffset += part.Size
} else {
firstPartIdx = i
skipLength = cumulativeActualSize - part.ActualSize
break
}
}
}
partSkip = offset - skipLength
// Load index and skip more if feasible.
if partSkip > 0 && len(oi.Parts) > firstPartIdx && len(oi.Parts[firstPartIdx].Index) > 0 {
_, isEncrypted := crypto.IsEncrypted(oi.UserDefined)
if isEncrypted {
dec, err := decrypt(oi.Parts[firstPartIdx].Index)
if err == nil {
// Load Index
var idx s2.Index
_, err := idx.Load(s2.RestoreIndexHeaders(dec))
// Find compressed/uncompressed offsets of our partskip
compOff, uCompOff, err2 := idx.Find(partSkip)
if err == nil && err2 == nil && compOff > 0 {
// Encrypted.
const sseDAREEncPackageBlockSize = SSEDAREPackageBlockSize + SSEDAREPackageMetaSize
// Number of full blocks in skipped area
seqNum = uint32(compOff / SSEDAREPackageBlockSize)
// Skip this many inside a decrypted block to get to compression block start
decryptSkip = compOff % SSEDAREPackageBlockSize
// Skip this number of full blocks.
skipEnc := compOff / SSEDAREPackageBlockSize
skipEnc *= sseDAREEncPackageBlockSize
compressedOffset += skipEnc
// Skip this number of uncompressed bytes.
partSkip -= uCompOff
}
}
} else {
// Not encrypted
var idx s2.Index
_, err := idx.Load(s2.RestoreIndexHeaders(oi.Parts[firstPartIdx].Index))
// Find compressed/uncompressed offsets of our partskip
compOff, uCompOff, err2 := idx.Find(partSkip)
if err == nil && err2 == nil && compOff > 0 {
compressedOffset += compOff
partSkip -= uCompOff
}
}
}
return compressedOffset, partSkip, firstPartIdx, decryptSkip, seqNum
}
// GetObjectReader is a type that wraps a reader with a lock to
// provide a ReadCloser interface that unlocks on Close()
type GetObjectReader struct {
io.Reader
ObjInfo ObjectInfo
cleanUpFns []func()
opts ObjectOptions
once sync.Once
}
// WithCleanupFuncs sets additional cleanup functions to be called when closing
// the GetObjectReader.
func (g *GetObjectReader) WithCleanupFuncs(fns ...func()) *GetObjectReader {
g.cleanUpFns = append(g.cleanUpFns, fns...)
return g
}
// NewGetObjectReaderFromReader sets up a GetObjectReader with a given
// reader. This ignores any object properties.
func NewGetObjectReaderFromReader(r io.Reader, oi ObjectInfo, opts ObjectOptions, cleanupFns ...func()) (*GetObjectReader, error) {
if opts.CheckPrecondFn != nil && opts.CheckPrecondFn(oi) {
// Call the cleanup funcs
for i := len(cleanupFns) - 1; i >= 0; i-- {
cleanupFns[i]()
}
return nil, PreConditionFailed{}
}
return &GetObjectReader{
ObjInfo: oi,
Reader: r,
cleanUpFns: cleanupFns,
opts: opts,
}, nil
}
// ObjReaderFn is a function type that takes a reader and returns
// GetObjectReader and an error. Request headers are passed to provide
// encryption parameters. cleanupFns allow cleanup funcs to be
// registered for calling after usage of the reader.
type ObjReaderFn func(inputReader io.Reader, h http.Header, cleanupFns ...func()) (r *GetObjectReader, err error)
// NewGetObjectReader creates a new GetObjectReader. The cleanUpFns
// are called on Close() in FIFO order as passed in ObjReadFn(). NOTE: It is
// assumed that clean up functions do not panic (otherwise, they may
// not all run!).
func NewGetObjectReader(rs *HTTPRangeSpec, oi ObjectInfo, opts ObjectOptions) (
fn ObjReaderFn, off, length int64, err error,
) {
if opts.CheckPrecondFn != nil && opts.CheckPrecondFn(oi) {
return nil, 0, 0, PreConditionFailed{}
}
if rs == nil && opts.PartNumber > 0 {
rs = partNumberToRangeSpec(oi, opts.PartNumber)
}
_, isEncrypted := crypto.IsEncrypted(oi.UserDefined)
isCompressed, err := oi.IsCompressedOK()
if err != nil {
return nil, 0, 0, err
}
// if object is encrypted and it is a restore request or if NoDecryption
// was requested, fetch content without decrypting.
if opts.Transition.RestoreRequest != nil || opts.NoDecryption {
isEncrypted = false
isCompressed = false
}
// Calculate range to read (different for encrypted/compressed objects)
switch {
case isCompressed:
var firstPart int
if opts.PartNumber > 0 {
// firstPart is an index to Parts slice,
// make sure that PartNumber uses the
// index value properly.
firstPart = opts.PartNumber - 1
}
// If compressed, we start from the beginning of the part.
// Read the decompressed size from the meta.json.
actualSize, err := oi.GetActualSize()
if err != nil {
return nil, 0, 0, err
}
var decryptSkip int64
var seqNum uint32
off, length = int64(0), oi.Size
decOff, decLength := int64(0), actualSize
if rs != nil {
off, length, err = rs.GetOffsetLength(actualSize)
if err != nil {
return nil, 0, 0, err
}
decrypt := func(b []byte) ([]byte, error) {
return b, nil
}
if isEncrypted {
decrypt = oi.compressionIndexDecrypt
}
// In case of range based queries on multiparts, the offset and length are reduced.
off, decOff, firstPart, decryptSkip, seqNum = getCompressedOffsets(oi, off, decrypt)
decLength = length
length = oi.Size - off
// For negative length we read everything.
if decLength < 0 {
decLength = actualSize - decOff
}
// Reply back invalid range if the input offset and length fall out of range.
if decOff > actualSize || decOff+decLength > actualSize {
return nil, 0, 0, errInvalidRange
}
}
fn = func(inputReader io.Reader, h http.Header, cFns ...func()) (r *GetObjectReader, err error) {
if isEncrypted {
copySource := h.Get(xhttp.AmzServerSideEncryptionCopyCustomerAlgorithm) != ""
// Attach decrypter on inputReader
inputReader, err = DecryptBlocksRequestR(inputReader, h, seqNum, firstPart, oi, copySource)
if err != nil {
// Call the cleanup funcs
for i := len(cFns) - 1; i >= 0; i-- {
cFns[i]()
}
return nil, err
}
if decryptSkip > 0 {
inputReader = ioutil.NewSkipReader(inputReader, decryptSkip)
}
oi.Size = decLength
}
// Decompression reader.
var dopts []s2.ReaderOption
if off > 0 || decOff > 0 {
// We are not starting at the beginning, so ignore stream identifiers.
dopts = append(dopts, s2.ReaderIgnoreStreamIdentifier())
}
s2Reader := s2.NewReader(inputReader, dopts...)
// Apply the skipLen and limit on the decompressed stream.
if decOff > 0 {
if err = s2Reader.Skip(decOff); err != nil {
// Call the cleanup funcs
for i := len(cFns) - 1; i >= 0; i-- {
cFns[i]()
}
return nil, err
}
}
decReader := io.LimitReader(s2Reader, decLength)
if decLength > compReadAheadSize {
rah, err := readahead.NewReaderSize(decReader, compReadAheadBuffers, compReadAheadBufSize)
if err == nil {
decReader = rah
cFns = append([]func(){func() {
rah.Close()
}}, cFns...)
}
}
oi.Size = decLength
// Assemble the GetObjectReader
r = &GetObjectReader{
ObjInfo: oi,
Reader: decReader,
cleanUpFns: cFns,
opts: opts,
}
return r, nil
}
case isEncrypted:
var seqNumber uint32
var partStart int
var skipLen int64
off, length, skipLen, seqNumber, partStart, err = oi.GetDecryptedRange(rs)
if err != nil {
return nil, 0, 0, err
}
var decSize int64
decSize, err = oi.DecryptedSize()
if err != nil {
return nil, 0, 0, err
}
var decRangeLength int64
decRangeLength, err = rs.GetLength(decSize)
if err != nil {
return nil, 0, 0, err
}
// We define a closure that performs decryption given
// a reader that returns the desired range of
// encrypted bytes. The header parameter is used to
// provide encryption parameters.
fn = func(inputReader io.Reader, h http.Header, cFns ...func()) (r *GetObjectReader, err error) {
copySource := h.Get(xhttp.AmzServerSideEncryptionCopyCustomerAlgorithm) != ""
// Attach decrypter on inputReader
var decReader io.Reader
decReader, err = DecryptBlocksRequestR(inputReader, h, seqNumber, partStart, oi, copySource)
if err != nil {
// Call the cleanup funcs
for i := len(cFns) - 1; i >= 0; i-- {
cFns[i]()
}
return nil, err
}
oi.ETag = getDecryptedETag(h, oi, false)
// Apply the skipLen and limit on the
// decrypted stream
decReader = io.LimitReader(ioutil.NewSkipReader(decReader, skipLen), decRangeLength)
// Assemble the GetObjectReader
r = &GetObjectReader{
ObjInfo: oi,
Reader: decReader,
cleanUpFns: cFns,
opts: opts,
}
return r, nil
}
default:
off, length, err = rs.GetOffsetLength(oi.Size)
if err != nil {
return nil, 0, 0, err
}
fn = func(inputReader io.Reader, _ http.Header, cFns ...func()) (r *GetObjectReader, err error) {
r = &GetObjectReader{
ObjInfo: oi,
Reader: inputReader,
cleanUpFns: cFns,
opts: opts,
}
return r, nil
}
}
return fn, off, length, nil
}
// Close - calls the cleanup actions in reverse order
func (g *GetObjectReader) Close() error {
if g == nil {
return nil
}
// sync.Once is used here to ensure that Close() is
// idempotent.
g.once.Do(func() {
for i := len(g.cleanUpFns) - 1; i >= 0; i-- {
g.cleanUpFns[i]()
}
})
return nil
}
// compressionIndexEncrypter returns a function that will read data from input,
// encrypt it using the provided key and return the result.
func compressionIndexEncrypter(key crypto.ObjectKey, input func() []byte) func() []byte {
var data []byte
var fetched bool
return func() []byte {
if !fetched {
data = input()
fetched = true
}
return metadataEncrypter(key)("compression-index", data)
}
}
// compressionIndexDecrypt reverses compressionIndexEncrypter.
func (o *ObjectInfo) compressionIndexDecrypt(input []byte) ([]byte, error) {
return o.metadataDecrypter()("compression-index", input)
}
// SealMD5CurrFn seals md5sum with object encryption key and returns sealed
// md5sum
type SealMD5CurrFn func([]byte) []byte
// PutObjReader is a type that wraps sio.EncryptReader and
// underlying hash.Reader in a struct
type PutObjReader struct {
*hash.Reader // actual data stream
rawReader *hash.Reader // original data stream
sealMD5Fn SealMD5CurrFn
}
// Size returns the absolute number of bytes the Reader
// will return during reading. It returns -1 for unlimited
// data.
func (p *PutObjReader) Size() int64 {
return p.Reader.Size()
}
// MD5CurrentHexString returns the current MD5Sum or encrypted MD5Sum
// as a hex encoded string
func (p *PutObjReader) MD5CurrentHexString() string {
md5sumCurr := p.rawReader.MD5Current()
var appendHyphen bool
// md5sumcurr is not empty in two scenarios
// - server is running in strict compatibility mode
// - client set Content-Md5 during PUT operation
if len(md5sumCurr) == 0 {
// md5sumCurr is only empty when we are running
// in non-compatibility mode.
md5sumCurr = make([]byte, 16)
rand.Read(md5sumCurr)
appendHyphen = true
}
if p.sealMD5Fn != nil {
md5sumCurr = p.sealMD5Fn(md5sumCurr)
}
if appendHyphen {
// Make sure to return etag string upto 32 length, for SSE
// requests ETag might be longer and the code decrypting the
// ETag ignores ETag in multipart ETag form i.e -N
return hex.EncodeToString(md5sumCurr)[:32] + "-1"
}
return hex.EncodeToString(md5sumCurr)
}
// WithEncryption sets up encrypted reader and the sealing for content md5sum
// using objEncKey. Unsealed md5sum is computed from the rawReader setup when
// NewPutObjReader was called. It returns an error if called on an uninitialized
// PutObjReader.
func (p *PutObjReader) WithEncryption(encReader *hash.Reader, objEncKey *crypto.ObjectKey) (*PutObjReader, error) {
if p.Reader == nil {
return nil, errors.New("put-object reader uninitialized")
}
p.Reader = encReader
p.sealMD5Fn = sealETagFn(*objEncKey)
return p, nil
}
// NewPutObjReader returns a new PutObjReader. It uses given hash.Reader's
// MD5Current method to construct md5sum when requested downstream.
func NewPutObjReader(rawReader *hash.Reader) *PutObjReader {
return &PutObjReader{Reader: rawReader, rawReader: rawReader}
}
func sealETag(encKey crypto.ObjectKey, md5CurrSum []byte) []byte {
var emptyKey [32]byte
if bytes.Equal(encKey[:], emptyKey[:]) {
return md5CurrSum
}
return encKey.SealETag(md5CurrSum)
}
func sealETagFn(key crypto.ObjectKey) SealMD5CurrFn {
fn := func(md5sumcurr []byte) []byte {
return sealETag(key, md5sumcurr)
}
return fn
}
// compressOpts are the options for writing compressed data.
var compressOpts []s2.WriterOption
func init() {
if runtime.GOARCH == "amd64" {
// On amd64 we have assembly and can use stronger compression.
compressOpts = append(compressOpts, s2.WriterBetterCompression())
}
}
// newS2CompressReader will read data from r, compress it and return the compressed data as a Reader.
// Use Close to ensure resources are released on incomplete streams.
//
// input 'on' is always recommended such that this function works
// properly, because we do not wish to create an object even if
// client closed the stream prematurely.
func newS2CompressReader(r io.Reader, on int64, encrypted bool) (rc io.ReadCloser, idx func() []byte) {
pr, pw := io.Pipe()
// Copy input to compressor
opts := compressOpts
if encrypted {
// The values used for padding are not a security concern,
// but we choose pseudo-random numbers instead of just zeros.
rng := rand.New(rand.NewSource(time.Now().UnixNano()))
opts = append([]s2.WriterOption{s2.WriterPadding(compPadEncrypted), s2.WriterPaddingSrc(rng)}, compressOpts...)
}
comp := s2.NewWriter(pw, opts...)
indexCh := make(chan []byte, 1)
go func() {
defer close(indexCh)
cn, err := io.Copy(comp, r)
if err != nil {
comp.Close()
pw.CloseWithError(err)
return
}
if on > 0 && on != cn {
// if client didn't sent all data
// from the client verify here.
comp.Close()
pw.CloseWithError(IncompleteBody{})
return
}
// Close the stream.
// If more than compMinIndexSize was written, generate index.
if cn > compMinIndexSize {
idx, err := comp.CloseIndex()
idx = s2.RemoveIndexHeaders(idx)
indexCh <- idx
pw.CloseWithError(err)
return
}
pw.CloseWithError(comp.Close())
}()
var gotIdx []byte
return pr, func() []byte {
if gotIdx != nil {
return gotIdx
}
// Will get index or nil if closed.
gotIdx = <-indexCh
return gotIdx
}
}
// compressSelfTest performs a self-test to ensure that compression
// algorithms completes a roundtrip. If any algorithm
// produces an incorrect checksum it fails with a hard error.
//
// compressSelfTest tries to catch any issue in the compression implementation
// early instead of silently corrupting data.
func compressSelfTest() {
// 4 MB block.
// Approx runtime ~30ms
data := make([]byte, 4<<20)
rng := rand.New(rand.NewSource(0))
for i := range data {
// Generate compressible stream...
data[i] = byte(rng.Int63() & 3)
}
failOnErr := func(err error) {
if err != nil {
logger.Fatal(errSelfTestFailure, "compress: error on self-test: %v", err)
}
}
const skip = 2<<20 + 511
r, _ := newS2CompressReader(bytes.NewBuffer(data), int64(len(data)), true)
b, err := io.ReadAll(r)
failOnErr(err)
failOnErr(r.Close())
// Decompression reader.
s2Reader := s2.NewReader(bytes.NewBuffer(b))
// Apply the skipLen on the decompressed stream.
failOnErr(s2Reader.Skip(skip))
got, err := io.ReadAll(s2Reader)
failOnErr(err)
if !bytes.Equal(got, data[skip:]) {
logger.Fatal(errSelfTestFailure, "compress: self-test roundtrip mismatch.")
}
}
// getDiskInfos returns the disk information for the provided disks.
// If a disk is nil or an error is returned the result will be nil as well.
func getDiskInfos(ctx context.Context, disks ...StorageAPI) []*DiskInfo {
res := make([]*DiskInfo, len(disks))
for i, disk := range disks {
if disk == nil {
continue
}
if di, err := disk.DiskInfo(ctx); err == nil {
res[i] = &di
}
}
return res
}
// hasSpaceFor returns whether the disks in `di` have space for and object of a given size.
func hasSpaceFor(di []*DiskInfo, size int64) (bool, error) {
// We multiply the size by 2 to account for erasure coding.
size *= 2
if size < 0 {
// If no size, assume diskAssumeUnknownSize.
size = diskAssumeUnknownSize
}
var available uint64
var total uint64
var nDisks int
for _, disk := range di {
if disk == nil || disk.Total == 0 || (disk.FreeInodes < diskMinInodes && disk.UsedInodes > 0) {
// Disk offline, no inodes or something else is wrong.
continue
}
nDisks++
total += disk.Total
available += disk.Total - disk.Used
}
if nDisks < len(di)/2 {
return false, fmt.Errorf("not enough online disks to calculate the available space, expected (%d)/(%d)", (len(di)/2)+1, nDisks)
}
// Check we have enough on each disk, ignoring diskFillFraction.
perDisk := size / int64(nDisks)
for _, disk := range di {
if disk == nil || disk.Total == 0 || (disk.FreeInodes < diskMinInodes && disk.UsedInodes > 0) {
continue
}
if int64(disk.Free) <= perDisk {
return false, nil
}
}
// Make sure we can fit "size" on to the disk without getting above the diskFillFraction
if available < uint64(size) {
return false, nil
}
// How much will be left after adding the file.
available -= uint64(size)
// wantLeft is how much space there at least must be left.
wantLeft := uint64(float64(total) * (1.0 - diskFillFraction))
return available > wantLeft, nil
}