// MinIO Cloud Storage, (C) 2015, 2016, 2017, 2018 MinIO, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package crypto import ( "bytes" "context" "crypto/hmac" "crypto/rand" "crypto/sha256" "encoding/binary" "errors" "io" "path" "github.com/minio/minio/cmd/logger" "github.com/minio/sio" ) // ObjectKey is a 256 bit secret key used to encrypt the object. // It must never be stored in plaintext. type ObjectKey [32]byte // GenerateKey generates a unique ObjectKey from a 256 bit external key // and a source of randomness. If random is nil the default PRNG of the // system (crypto/rand) is used. func GenerateKey(extKey [32]byte, random io.Reader) (key ObjectKey) { if random == nil { random = rand.Reader } var nonce [32]byte if _, err := io.ReadFull(random, nonce[:]); err != nil { logger.CriticalIf(context.Background(), errOutOfEntropy) } sha := sha256.New() sha.Write(extKey[:]) sha.Write(nonce[:]) sha.Sum(key[:0]) return key } // GenerateIV generates a new random 256 bit IV from the provided source // of randomness. If random is nil the default PRNG of the system // (crypto/rand) is used. func GenerateIV(random io.Reader) (iv [32]byte) { if random == nil { random = rand.Reader } if _, err := io.ReadFull(random, iv[:]); err != nil { logger.CriticalIf(context.Background(), errOutOfEntropy) } return iv } // SealedKey represents a sealed object key. It can be stored // at an untrusted location. type SealedKey struct { Key [64]byte // The encrypted and authenticted object-key. IV [32]byte // The random IV used to encrypt the object-key. Algorithm string // The sealing algorithm used to encrypt the object key. } // Seal encrypts the ObjectKey using the 256 bit external key and IV. The sealed // key is also cryptographically bound to the object's path (bucket/object) and the // domain (SSE-C or SSE-S3). func (key ObjectKey) Seal(extKey, iv [32]byte, domain, bucket, object string) SealedKey { var ( sealingKey [32]byte encryptedKey bytes.Buffer ) mac := hmac.New(sha256.New, extKey[:]) mac.Write(iv[:]) mac.Write([]byte(domain)) mac.Write([]byte(SealAlgorithm)) mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object' mac.Sum(sealingKey[:0]) if n, err := sio.Encrypt(&encryptedKey, bytes.NewReader(key[:]), sio.Config{Key: sealingKey[:]}); n != 64 || err != nil { logger.CriticalIf(context.Background(), errors.New("Unable to generate sealed key")) } sealedKey := SealedKey{ IV: iv, Algorithm: SealAlgorithm, } copy(sealedKey.Key[:], encryptedKey.Bytes()) return sealedKey } // Unseal decrypts a sealed key using the 256 bit external key. Since the sealed key // may be cryptographically bound to the object's path the same bucket/object as during sealing // must be provided. On success the ObjectKey contains the decrypted sealed key. func (key *ObjectKey) Unseal(extKey [32]byte, sealedKey SealedKey, domain, bucket, object string) error { var ( unsealConfig sio.Config ) switch sealedKey.Algorithm { default: return Errorf("The sealing algorithm '%s' is not supported", sealedKey.Algorithm) case SealAlgorithm: mac := hmac.New(sha256.New, extKey[:]) mac.Write(sealedKey.IV[:]) mac.Write([]byte(domain)) mac.Write([]byte(SealAlgorithm)) mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object' unsealConfig = sio.Config{MinVersion: sio.Version20, Key: mac.Sum(nil)} case InsecureSealAlgorithm: sha := sha256.New() sha.Write(extKey[:]) sha.Write(sealedKey.IV[:]) unsealConfig = sio.Config{MinVersion: sio.Version10, Key: sha.Sum(nil)} } if out, err := sio.DecryptBuffer(key[:0], sealedKey.Key[:], unsealConfig); len(out) != 32 || err != nil { return ErrSecretKeyMismatch } return nil } // DerivePartKey derives an unique 256 bit key from an ObjectKey and the part index. func (key ObjectKey) DerivePartKey(id uint32) (partKey [32]byte) { var bin [4]byte binary.LittleEndian.PutUint32(bin[:], id) mac := hmac.New(sha256.New, key[:]) mac.Write(bin[:]) mac.Sum(partKey[:0]) return partKey } // SealETag seals the etag using the object key. // It does not encrypt empty ETags because such ETags indicate // that the S3 client hasn't sent an ETag = MD5(object) and // the backend can pick an ETag value. func (key ObjectKey) SealETag(etag []byte) []byte { if len(etag) == 0 { // don't encrypt empty ETag - only if client sent ETag = MD5(object) return etag } var buffer bytes.Buffer mac := hmac.New(sha256.New, key[:]) mac.Write([]byte("SSE-etag")) if _, err := sio.Encrypt(&buffer, bytes.NewReader(etag), sio.Config{Key: mac.Sum(nil)}); err != nil { logger.CriticalIf(context.Background(), errors.New("Unable to encrypt ETag using object key")) } return buffer.Bytes() } // UnsealETag unseals the etag using the provided object key. // It does not try to decrypt the ETag if len(etag) == 16 // because such ETags indicate that the S3 client hasn't sent // an ETag = MD5(object) and the backend has picked an ETag value. func (key ObjectKey) UnsealETag(etag []byte) ([]byte, error) { if !IsETagSealed(etag) { return etag, nil } mac := hmac.New(sha256.New, key[:]) mac.Write([]byte("SSE-etag")) return sio.DecryptBuffer(make([]byte, 0, len(etag)), etag, sio.Config{Key: mac.Sum(nil)}) }