// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . // Package fips provides functionality to configure cryptographic // implementations compliant with FIPS 140. // // FIPS 140 [1] is a US standard for data processing that specifies // requirements for cryptographic modules. Software that is "FIPS 140 // compliant" must use approved cryptographic primitives only and that // are implemented by a FIPS 140 certified cryptographic module. // // So, FIPS 140 requires that a certified implementation of e.g. AES // is used to implement more high-level cryptographic protocols. // It does not require any specific security criteria for those // high-level protocols. FIPS 140 focuses only on the implementation // and usage of the most low-level cryptographic building blocks. // // [1]: https://en.wikipedia.org/wiki/FIPS_140 package fips import ( "crypto/tls" "github.com/minio/sio" ) // Enabled indicates whether cryptographic primitives, // like AES or SHA-256, are implemented using a FIPS 140 // certified module. // // If FIPS-140 is enabled no non-NIST/FIPS approved // primitives must be used. const Enabled = enabled // DARECiphers returns a list of supported cipher suites // for the DARE object encryption. func DARECiphers() []byte { if Enabled { return []byte{sio.AES_256_GCM} } return []byte{sio.AES_256_GCM, sio.CHACHA20_POLY1305} } // TLSCiphers returns a list of supported TLS transport // cipher suite IDs. // // The list contains only ciphers that use AES-GCM or // (non-FIPS) CHACHA20-POLY1305 and ellitpic curve key // exchange. func TLSCiphers() []uint16 { if Enabled { return []uint16{ tls.TLS_AES_128_GCM_SHA256, // TLS 1.3 tls.TLS_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, } } return []uint16{ tls.TLS_CHACHA20_POLY1305_SHA256, // TLS 1.3 tls.TLS_AES_128_GCM_SHA256, tls.TLS_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, // TLS 1.2 tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, } } // TLSCiphersBackwardCompatible returns a list of supported // TLS transport cipher suite IDs. // // In contrast to TLSCiphers, the list contains additional // ciphers for backward compatibility. In particular, AES-CBC // and non-ECDHE ciphers. func TLSCiphersBackwardCompatible() []uint16 { if Enabled { return []uint16{ tls.TLS_AES_128_GCM_SHA256, // TLS 1.3 tls.TLS_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 ECDHE GCM tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // TLS 1.2 ECDHE CBC tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, tls.TLS_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 non-ECDHE tls.TLS_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_RSA_WITH_AES_128_CBC_SHA, tls.TLS_RSA_WITH_AES_256_CBC_SHA, } } return []uint16{ tls.TLS_CHACHA20_POLY1305_SHA256, // TLS 1.3 tls.TLS_AES_128_GCM_SHA256, tls.TLS_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, // TLS 1.2 ECDHE GCM / POLY1305 tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, // TLS 1.2 ECDHE CBC tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, tls.TLS_RSA_WITH_AES_128_GCM_SHA256, // TLS 1.2 non-ECDHE tls.TLS_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_RSA_WITH_AES_128_CBC_SHA, tls.TLS_RSA_WITH_AES_256_CBC_SHA, } } // TLSCurveIDs returns a list of supported elliptic curve IDs // in preference order. func TLSCurveIDs() []tls.CurveID { var curves []tls.CurveID if !Enabled { curves = append(curves, tls.X25519) // Only enable X25519 in non-FIPS mode } curves = append(curves, tls.CurveP256, tls.CurveP384, tls.CurveP521) return curves }