/* * Minio Cloud Storage, (C) 2017, 2018 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package cmd import ( "bytes" "crypto/hmac" "crypto/md5" "crypto/rand" "crypto/subtle" "encoding/base64" "encoding/binary" "errors" "io" "net/http" sha256 "github.com/minio/sha256-simd" "github.com/minio/sio" ) var ( // AWS errors for invalid SSE-C requests. errInsecureSSERequest = errors.New("Requests specifying Server Side Encryption with Customer provided keys must be made over a secure connection") errEncryptedObject = errors.New("The object was stored using a form of Server Side Encryption. The correct parameters must be provided to retrieve the object") errInvalidSSEAlgorithm = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide a valid encryption algorithm") errMissingSSEKey = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide an appropriate secret key") errInvalidSSEKey = errors.New("The secret key was invalid for the specified algorithm") errMissingSSEKeyMD5 = errors.New("Requests specifying Server Side Encryption with Customer provided keys must provide the client calculated MD5 of the secret key") errSSEKeyMD5Mismatch = errors.New("The calculated MD5 hash of the key did not match the hash that was provided") errSSEKeyMismatch = errors.New("The client provided key does not match the key provided when the object was encrypted") // this msg is not shown to the client // Additional Minio errors for SSE-C requests. errObjectTampered = errors.New("The requested object was modified and may be compromised") ) const ( // SSECustomerAlgorithm is the AWS SSE-C algorithm HTTP header key. SSECustomerAlgorithm = "X-Amz-Server-Side-Encryption-Customer-Algorithm" // SSECustomerKey is the AWS SSE-C encryption key HTTP header key. SSECustomerKey = "X-Amz-Server-Side-Encryption-Customer-Key" // SSECustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key. SSECustomerKeyMD5 = "X-Amz-Server-Side-Encryption-Customer-Key-MD5" // SSECopyCustomerAlgorithm is the AWS SSE-C algorithm HTTP header key for CopyObject API. SSECopyCustomerAlgorithm = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Algorithm" // SSECopyCustomerKey is the AWS SSE-C encryption key HTTP header key for CopyObject API. SSECopyCustomerKey = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key" // SSECopyCustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key for CopyObject API. SSECopyCustomerKeyMD5 = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key-MD5" ) const ( // SSECustomerKeySize is the size of valid client provided encryption keys in bytes. // Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes. SSECustomerKeySize = 32 // SSEIVSize is the size of the IV data SSEIVSize = 32 // 32 bytes // SSECustomerAlgorithmAES256 the only valid S3 SSE-C encryption algorithm identifier. SSECustomerAlgorithmAES256 = "AES256" // SSE dare package block size. sseDAREPackageBlockSize = 64 * 1024 // 64KiB bytes // SSE dare package meta padding bytes. sseDAREPackageMetaSize = 32 // 32 bytes ) // SSE-C key derivation, key verification and key update: // H: Hash function [32 = |H(m)|] // AE: authenticated encryption scheme, AD: authenticated decryption scheme [m = AD(k, AE(k, m))] // // Key derivation: // Input: // key := 32 bytes # client provided key // Re, Rm := 32 bytes, 32 bytes # uniformly random // // Seal: // k := H(key || Re) # object encryption key // r := H(Rm) # save as object metadata [ServerSideEncryptionIV] // KeK := H(key || r) # key encryption key // K := AE(KeK, k) # save as object metadata [ServerSideEncryptionSealedKey] // ------------------------------------------------------------------------------------------------ // Key verification: // Input: // key := 32 bytes # client provided key // r := 32 bytes # object metadata [ServerSideEncryptionIV] // K := 32 bytes # object metadata [ServerSideEncryptionSealedKey] // // Open: // KeK := H(key || r) # key encryption key // k := AD(Kek, K) # object encryption key // ------------------------------------------------------------------------------------------------- // Key update: // Input: // key := 32 bytes # old client provided key // key' := 32 bytes # new client provided key // Rm := 32 bytes # uniformly random // r := 32 bytes # object metadata [ServerSideEncryptionIV] // K := 32 bytes # object metadata [ServerSideEncryptionSealedKey] // // Update: // 1. open: // KeK := H(key || r) # key encryption key // k := AD(Kek, K) # object encryption key // 2. seal: // r' := H(Rm) # save as object metadata [ServerSideEncryptionIV] // KeK' := H(key' || r') # new key encryption key // K' := AE(KeK', k) # save as object metadata [ServerSideEncryptionSealedKey] const ( // ServerSideEncryptionIV is a 32 byte randomly generated IV used to derive an // unique key encryption key from the client provided key. The combination of this value // and the client-provided key MUST be unique. ServerSideEncryptionIV = ReservedMetadataPrefix + "Server-Side-Encryption-Iv" // ServerSideEncryptionSealAlgorithm identifies a combination of a cryptographic hash function and // an authenticated en/decryption scheme to seal the object encryption key. ServerSideEncryptionSealAlgorithm = ReservedMetadataPrefix + "Server-Side-Encryption-Seal-Algorithm" // ServerSideEncryptionSealedKey is the sealed object encryption key. The sealed key can be decrypted // by the key encryption key derived from the client provided key and the server-side-encryption IV. ServerSideEncryptionSealedKey = ReservedMetadataPrefix + "Server-Side-Encryption-Sealed-Key" ) // SSESealAlgorithmDareSha256 specifies DARE as authenticated en/decryption scheme and SHA256 as cryptographic // hash function. const SSESealAlgorithmDareSha256 = "DARE-SHA256" // IsSSECustomerRequest returns true if the given HTTP header // contains server-side-encryption with customer provided key fields. func IsSSECustomerRequest(header http.Header) bool { return header.Get(SSECustomerAlgorithm) != "" || header.Get(SSECustomerKey) != "" || header.Get(SSECustomerKeyMD5) != "" } // IsSSECopyCustomerRequest returns true if the given HTTP header // contains copy source server-side-encryption with customer provided key fields. func IsSSECopyCustomerRequest(header http.Header) bool { return header.Get(SSECopyCustomerAlgorithm) != "" || header.Get(SSECopyCustomerKey) != "" || header.Get(SSECopyCustomerKeyMD5) != "" } // ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECopyCustomerRequest(r *http.Request) (key []byte, err error) { if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time // we cannot use r.TLS == nil here because Go's http implementation reflects on // the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn. // Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package // will always fail -> r.TLS is always nil even for TLS requests. return nil, errInsecureSSERequest } header := r.Header if algorithm := header.Get(SSECopyCustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 { return nil, errInvalidSSEAlgorithm } if header.Get(SSECopyCustomerKey) == "" { return nil, errMissingSSEKey } if header.Get(SSECopyCustomerKeyMD5) == "" { return nil, errMissingSSEKeyMD5 } key, err = base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKey)) if err != nil { return nil, errInvalidSSEKey } if len(key) != SSECustomerKeySize { return nil, errInvalidSSEKey } // Make sure we purged the keys from http headers by now. header.Del(SSECopyCustomerKey) keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKeyMD5)) if err != nil { return nil, errSSEKeyMD5Mismatch } if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) { return nil, errSSEKeyMD5Mismatch } return key, nil } // ParseSSECustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) { if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time // we cannot use r.TLS == nil here because Go's http implementation reflects on // the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn. // Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package // will always fail -> r.TLS is always nil even for TLS requests. return nil, errInsecureSSERequest } header := r.Header if algorithm := header.Get(SSECustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 { return nil, errInvalidSSEAlgorithm } if header.Get(SSECustomerKey) == "" { return nil, errMissingSSEKey } if header.Get(SSECustomerKeyMD5) == "" { return nil, errMissingSSEKeyMD5 } key, err = base64.StdEncoding.DecodeString(header.Get(SSECustomerKey)) if err != nil { return nil, errInvalidSSEKey } if len(key) != SSECustomerKeySize { return nil, errInvalidSSEKey } // Make sure we purged the keys from http headers by now. header.Del(SSECustomerKey) keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECustomerKeyMD5)) if err != nil { return nil, errSSEKeyMD5Mismatch } if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) { return nil, errSSEKeyMD5Mismatch } return key, nil } // This function rotates old to new key. func rotateKey(oldKey []byte, newKey []byte, metadata map[string]string) error { if subtle.ConstantTimeCompare(oldKey, newKey) == 1 { return nil } delete(metadata, SSECustomerKey) // make sure we do not save the key by accident if metadata[ServerSideEncryptionSealAlgorithm] != SSESealAlgorithmDareSha256 { // currently DARE-SHA256 is the only option return errObjectTampered } iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV]) if err != nil || len(iv) != SSEIVSize { return errObjectTampered } sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey]) if err != nil || len(sealedKey) != 64 { return errObjectTampered } sha := sha256.New() // derive key encryption key sha.Write(oldKey) sha.Write(iv) keyEncryptionKey := sha.Sum(nil) objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{ Key: keyEncryptionKey, }) if n != 32 || err != nil { // Either the provided key does not match or the object was tampered. // To provide strict AWS S3 compatibility we return: access denied. return errSSEKeyMismatch } nonce := make([]byte, 32) // generate random values for key derivation if _, err = io.ReadFull(rand.Reader, nonce); err != nil { return err } niv := sha256.Sum256(nonce[:]) // derive key encryption key sha = sha256.New() sha.Write(newKey) sha.Write(niv[:]) keyEncryptionKey = sha.Sum(nil) sealedKeyW := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag n, err = sio.Encrypt(sealedKeyW, bytes.NewReader(objectEncryptionKey.Bytes()), sio.Config{ Key: keyEncryptionKey, }) if n != 64 || err != nil { return errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?) } metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(niv[:]) metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareSha256 metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKeyW.Bytes()) return nil } func newEncryptMetadata(key []byte, metadata map[string]string) ([]byte, error) { delete(metadata, SSECustomerKey) // make sure we do not save the key by accident // security notice: // - If the first 32 bytes of the random value are ever repeated under the same client-provided // key the encrypted object will not be tamper-proof. [ P(coll) ~= 1 / 2^(256 / 2)] // - If the last 32 bytes of the random value are ever repeated under the same client-provided // key an adversary may be able to extract the object encryption key. This depends on the // authenticated en/decryption scheme. The DARE format will generate an 8 byte nonce which must // be repeated in addition to reveal the object encryption key. // [ P(coll) ~= 1 / 2^((256 + 64) / 2) ] nonce := make([]byte, 32+SSEIVSize) // generate random values for key derivation if _, err := io.ReadFull(rand.Reader, nonce); err != nil { return nil, err } sha := sha256.New() // derive object encryption key sha.Write(key) sha.Write(nonce[:32]) objectEncryptionKey := sha.Sum(nil) iv := sha256.Sum256(nonce[32:]) // derive key encryption key sha = sha256.New() sha.Write(key) sha.Write(iv[:]) keyEncryptionKey := sha.Sum(nil) sealedKey := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag n, err := sio.Encrypt(sealedKey, bytes.NewReader(objectEncryptionKey), sio.Config{ Key: keyEncryptionKey, }) if n != 64 || err != nil { return nil, errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?) } metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:]) metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareSha256 metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Bytes()) return objectEncryptionKey, nil } func newEncryptReader(content io.Reader, key []byte, metadata map[string]string) (io.Reader, error) { objectEncryptionKey, err := newEncryptMetadata(key, metadata) if err != nil { return nil, err } reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey}) if err != nil { return nil, errInvalidSSEKey } return reader, nil } // EncryptRequest takes the client provided content and encrypts the data // with the client provided key. It also marks the object as client-side-encrypted // and sets the correct headers. func EncryptRequest(content io.Reader, r *http.Request, metadata map[string]string) (io.Reader, error) { key, err := ParseSSECustomerRequest(r) if err != nil { return nil, err } return newEncryptReader(content, key, metadata) } // DecryptCopyRequest decrypts the object with the client provided key. It also removes // the client-side-encryption metadata from the object and sets the correct headers. func DecryptCopyRequest(client io.Writer, r *http.Request, metadata map[string]string) (io.WriteCloser, error) { key, err := ParseSSECopyCustomerRequest(r) if err != nil { return nil, err } delete(metadata, SSECopyCustomerKey) // make sure we do not save the key by accident return newDecryptWriter(client, key, 0, metadata) } func decryptObjectInfo(key []byte, metadata map[string]string) ([]byte, error) { if metadata[ServerSideEncryptionSealAlgorithm] != SSESealAlgorithmDareSha256 { // currently DARE-SHA256 is the only option return nil, errObjectTampered } iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV]) if err != nil || len(iv) != SSEIVSize { return nil, errObjectTampered } sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey]) if err != nil || len(sealedKey) != 64 { return nil, errObjectTampered } sha := sha256.New() // derive key encryption key sha.Write(key) sha.Write(iv) keyEncryptionKey := sha.Sum(nil) objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{ Key: keyEncryptionKey, }) if n != 32 || err != nil { // Either the provided key does not match or the object was tampered. // To provide strict AWS S3 compatibility we return: access denied. return nil, errSSEKeyMismatch } return objectEncryptionKey.Bytes(), nil } func newDecryptWriter(client io.Writer, key []byte, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { objectEncryptionKey, err := decryptObjectInfo(key, metadata) if err != nil { return nil, err } return newDecryptWriterWithObjectKey(client, objectEncryptionKey, seqNumber, metadata) } func newDecryptWriterWithObjectKey(client io.Writer, objectEncryptionKey []byte, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { writer, err := sio.DecryptWriter(client, sio.Config{ Key: objectEncryptionKey, SequenceNumber: seqNumber, }) if err != nil { return nil, errInvalidSSEKey } delete(metadata, ServerSideEncryptionIV) delete(metadata, ServerSideEncryptionSealAlgorithm) delete(metadata, ServerSideEncryptionSealedKey) return writer, nil } // DecryptRequestWithSequenceNumber decrypts the object with the client provided key. It also removes // the client-side-encryption metadata from the object and sets the correct headers. func DecryptRequestWithSequenceNumber(client io.Writer, r *http.Request, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { key, err := ParseSSECustomerRequest(r) if err != nil { return nil, err } delete(metadata, SSECustomerKey) // make sure we do not save the key by accident return newDecryptWriter(client, key, seqNumber, metadata) } // DecryptRequest decrypts the object with the client provided key. It also removes // the client-side-encryption metadata from the object and sets the correct headers. func DecryptRequest(client io.Writer, r *http.Request, metadata map[string]string) (io.WriteCloser, error) { return DecryptRequestWithSequenceNumber(client, r, 0, metadata) } // DecryptBlocksWriter - decrypts multipart parts, while implementing a io.Writer compatible interface. type DecryptBlocksWriter struct { // Original writer where the plain data will be written writer io.Writer // Current decrypter for the current encrypted data block decrypter io.WriteCloser // Start sequence number startSeqNum uint32 // Current part index partIndex int // Parts information parts []objectPartInfo req *http.Request metadata map[string]string partEncRelOffset int64 // Customer Key customerKeyHeader string } func (w *DecryptBlocksWriter) buildDecrypter(partID int) error { m := make(map[string]string) for k, v := range w.metadata { m[k] = v } // Initialize the first decrypter, new decrypters will be initialized in Write() operation as needed. w.req.Header.Set(SSECustomerKey, w.customerKeyHeader) key, err := ParseSSECustomerRequest(w.req) if err != nil { return err } objectEncryptionKey, err := decryptObjectInfo(key, m) if err != nil { return err } var partIDbin [4]byte binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key mac.Write(partIDbin[:]) partEncryptionKey := mac.Sum(nil) delete(m, SSECustomerKey) // make sure we do not save the key by accident decrypter, err := newDecryptWriterWithObjectKey(w.writer, partEncryptionKey, w.startSeqNum, m) if err != nil { return err } if w.decrypter != nil { err = w.decrypter.Close() if err != nil { return err } } w.decrypter = decrypter return nil } func (w *DecryptBlocksWriter) Write(p []byte) (int, error) { var err error var n1 int if int64(len(p)) < w.parts[w.partIndex].Size-w.partEncRelOffset { n1, err = w.decrypter.Write(p) if err != nil { return 0, err } w.partEncRelOffset += int64(n1) } else { n1, err = w.decrypter.Write(p[:w.parts[w.partIndex].Size-w.partEncRelOffset]) if err != nil { return 0, err } // We should now proceed to next part, reset all values appropriately. w.partEncRelOffset = 0 w.startSeqNum = 0 w.partIndex++ err = w.buildDecrypter(w.partIndex + 1) if err != nil { return 0, err } n1, err = w.decrypter.Write(p[n1:]) if err != nil { return 0, err } w.partEncRelOffset += int64(n1) } return len(p), nil } // Close closes the LimitWriter. It behaves like io.Closer. func (w *DecryptBlocksWriter) Close() error { if w.decrypter != nil { err := w.decrypter.Close() if err != nil { return err } } if closer, ok := w.writer.(io.Closer); ok { return closer.Close() } return nil } // DecryptBlocksRequest - setup a struct which can decrypt many concatenated encrypted data // parts information helps to know the boundaries of each encrypted data block. func DecryptBlocksRequest(client io.Writer, r *http.Request, startOffset, length int64, objInfo ObjectInfo) (io.WriteCloser, int64, int64, error) { seqNumber, encStartOffset, encLength := getEncryptedStartOffset(startOffset, length) // Encryption length cannot be bigger than the file size, if it is // which is allowed in AWS S3, we simply default to EncryptedSize(). if encLength+encStartOffset > objInfo.EncryptedSize() { encLength = objInfo.EncryptedSize() - encStartOffset } if len(objInfo.Parts) == 0 || !objInfo.IsEncryptedMultipart() { writer, err := DecryptRequestWithSequenceNumber(client, r, seqNumber, objInfo.UserDefined) if err != nil { return nil, 0, 0, err } return writer, encStartOffset, encLength, nil } var partStartIndex int var partStartOffset = startOffset // Skip parts until final offset maps to a particular part offset. for i, part := range objInfo.Parts { decryptedSize, err := decryptedSize(part.Size) if err != nil { return nil, -1, -1, err } partStartIndex = i // Offset is smaller than size we have reached the // proper part offset, break out we start from // this part index. if partStartOffset < decryptedSize { break } // Continue to look for next part. partStartOffset -= decryptedSize } startSeqNum := partStartOffset / sseDAREPackageBlockSize partEncRelOffset := int64(startSeqNum) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize) w := &DecryptBlocksWriter{ writer: client, startSeqNum: uint32(startSeqNum), partEncRelOffset: partEncRelOffset, parts: objInfo.Parts, partIndex: partStartIndex, req: r, customerKeyHeader: r.Header.Get(SSECustomerKey), metadata: objInfo.UserDefined, } w.buildDecrypter(partStartIndex + 1) return w, encStartOffset, encLength, nil } // getEncryptedStartOffset - fetch sequence number, encrypted start offset and encrypted length. func getEncryptedStartOffset(offset, length int64) (seqNumber uint32, encOffset int64, encLength int64) { onePkgSize := int64(sseDAREPackageBlockSize + sseDAREPackageMetaSize) seqNumber = uint32(offset / sseDAREPackageBlockSize) encOffset = int64(seqNumber) * onePkgSize // The math to compute the encrypted length is always // originalLength i.e (offset+length-1) to be divided under // 64KiB blocks which is the payload size for each encrypted // block. This is then multiplied by final package size which // is basically 64KiB + 32. Finally negate the encrypted offset // to get the final encrypted length on disk. encLength = ((offset+length)/sseDAREPackageBlockSize)*onePkgSize - encOffset // Check for the remainder, to figure if we need one extract package to read from. if (offset+length)%sseDAREPackageBlockSize > 0 { encLength += onePkgSize } return seqNumber, encOffset, encLength } // IsEncryptedMultipart - is the encrypted content multiparted? func (o *ObjectInfo) IsEncryptedMultipart() bool { _, ok := o.UserDefined[ReservedMetadataPrefix+"Encrypted-Multipart"] return ok } // IsEncrypted returns true if the object is marked as encrypted. func (o *ObjectInfo) IsEncrypted() bool { if _, ok := o.UserDefined[ServerSideEncryptionIV]; ok { return true } if _, ok := o.UserDefined[ServerSideEncryptionSealAlgorithm]; ok { return true } if _, ok := o.UserDefined[ServerSideEncryptionSealedKey]; ok { return true } return false } // IsEncrypted returns true if the object is marked as encrypted. func (li *ListPartsInfo) IsEncrypted() bool { if _, ok := li.UserDefined[ServerSideEncryptionIV]; ok { return true } if _, ok := li.UserDefined[ServerSideEncryptionSealAlgorithm]; ok { return true } if _, ok := li.UserDefined[ServerSideEncryptionSealedKey]; ok { return true } return false } func decryptedSize(encryptedSize int64) (int64, error) { if encryptedSize == 0 { return encryptedSize, nil } size := (encryptedSize / (sseDAREPackageBlockSize + sseDAREPackageMetaSize)) * sseDAREPackageBlockSize if mod := encryptedSize % (sseDAREPackageBlockSize + sseDAREPackageMetaSize); mod > 0 { if mod < sseDAREPackageMetaSize+1 { return -1, errObjectTampered // object is not 0 size but smaller than the smallest valid encrypted object } size += mod - sseDAREPackageMetaSize } return size, nil } // DecryptedSize returns the size of the object after decryption in bytes. // It returns an error if the object is not encrypted or marked as encrypted // but has an invalid size. // DecryptedSize panics if the referred object is not encrypted. func (o *ObjectInfo) DecryptedSize() (int64, error) { if !o.IsEncrypted() { panic("cannot compute decrypted size of an object which is not encrypted") } return decryptedSize(o.Size) } // EncryptedSize returns the size of the object after encryption. // An encrypted object is always larger than a plain object // except for zero size objects. func (o *ObjectInfo) EncryptedSize() int64 { size := (o.Size / sseDAREPackageBlockSize) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize) if mod := o.Size % (sseDAREPackageBlockSize); mod > 0 { size += mod + sseDAREPackageMetaSize } return size } // DecryptCopyObjectInfo tries to decrypt the provided object if it is encrypted. // It fails if the object is encrypted and the HTTP headers don't contain // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior) // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the // decryption succeeded. // // DecryptCopyObjectInfo also returns whether the object is encrypted or not. func DecryptCopyObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) { // Directories are never encrypted. if info.IsDir { return ErrNone, false } if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && IsSSECopyCustomerRequest(headers) { apiErr = ErrInvalidEncryptionParameters } else if encrypted { if !IsSSECopyCustomerRequest(headers) { apiErr = ErrSSEEncryptedObject return } var err error if info.Size, err = info.DecryptedSize(); err != nil { apiErr = toAPIErrorCode(err) } } return } // DecryptObjectInfo tries to decrypt the provided object if it is encrypted. // It fails if the object is encrypted and the HTTP headers don't contain // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior) // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the // decryption succeeded. // // DecryptObjectInfo also returns whether the object is encrypted or not. func DecryptObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) { // Directories are never encrypted. if info.IsDir { return ErrNone, false } if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && IsSSECustomerRequest(headers) { apiErr = ErrInvalidEncryptionParameters } else if encrypted { if !IsSSECustomerRequest(headers) { apiErr = ErrSSEEncryptedObject return } var err error if info.Size, err = info.DecryptedSize(); err != nil { apiErr = toAPIErrorCode(err) } } return }