Create new code paths for multiple subsystems in the code. This will
make maintaing this easier later.
Also introduce bugLogIf() for errors that should not happen in the first
place.
Main motivation is move towards a common backend format
for all different types of modes in MinIO, allowing for
a simpler code and predictable behavior across all features.
This PR also brings features such as versioning, replication,
transitioning to single drive setups.
Stop async listing if we have not heard back from the client for 3 minutes.
This will stop spending resources on async listings when they are unlikely to get used.
If the client returns a new listing will be started on the second request.
Stop saving cache metadata to disk. It is cleared on restarts anyway. Removes all
load/save functionality
This is to ensure that there are no projects
that try to import `minio/minio/pkg` into
their own repo. Any such common packages should
go to `https://github.com/minio/pkg`
store the cache in-memory instead of disks to avoid large
write amplifications for list heavy workloads, store in
memory instead and let it auto expire.
This commit adds a new package `etag` for dealing
with S3 ETags.
Even though ETag is often viewed as MD5 checksum of
an object, handling S3 ETags correctly is a surprisingly
complex task. While it is true that the ETag corresponds
to the MD5 for the most basic S3 API operations, there are
many exceptions in case of multipart uploads or encryption.
In worse, some S3 clients expect very specific behavior when
it comes to ETags. For example, some clients expect that the
ETag is a double-quoted string and fail otherwise.
Non-AWS compliant ETag handling has been a source of many bugs
in the past.
Therefore, this commit adds a dedicated `etag` package that provides
functionality for parsing, generating and converting S3 ETags.
Further, this commit removes the ETag computation from the `hash`
package. Instead, the `hash` package (i.e. `hash.Reader`) should
focus only on computing and verifying the content-sha256.
One core feature of this commit is to provide a mechanism to
communicate a computed ETag from a low-level `io.Reader` to
a high-level `io.Reader`.
This problem occurs when an S3 server receives a request and
has to compute the ETag of the content. However, the server
may also wrap the initial body with several other `io.Reader`,
e.g. when encrypting or compressing the content:
```
reader := Encrypt(Compress(ETag(content)))
```
In such a case, the ETag should be accessible by the high-level
`io.Reader`.
The `etag` provides a mechanism to wrap `io.Reader` implementations
such that the `ETag` can be accessed by a type-check.
This technique is applied to the PUT, COPY and Upload handlers.
To avoid large delays in metacache cleanup, use rename
instead of recursive delete calls, renames are cheaper
move the content to minioMetaTmpBucket and then cleanup
this folder once in 24hrs instead.
If the new cache can replace an existing one, we should
let it replace since that is currently being saved anyways,
this avoids pile up of 1000's of metacache entires for
same listing calls that are not necessary to be stored
on disk.
This change moves away from a unified constructor for plaintext and encrypted
usage. NewPutObjReader is simplified for the plain-text reader use. For
encrypted reader use, WithEncryption should be called on an initialized PutObjReader.
Plaintext:
func NewPutObjReader(rawReader *hash.Reader) *PutObjReader
The hash.Reader is used to provide payload size and md5sum to the downstream
consumers. This is different from the previous version in that there is no need
to pass nil values for unused parameters.
Encrypted:
func WithEncryption(encReader *hash.Reader,
key *crypto.ObjectKey) (*PutObjReader, error)
This method sets up encrypted reader along with the key to seal the md5sum
produced by the plain-text reader (already setup when NewPutObjReader was
called).
Usage:
```
pReader := NewPutObjReader(rawReader)
// ... other object handler code goes here
// Prepare the encrypted hashed reader
pReader, err = pReader.WithEncryption(encReader, objEncKey)
```
few places were still using legacy call GetObject()
which was mainly designed for client response writer,
use GetObjectNInfo() for internal calls instead.
When searching the caches don't copy the ids, instead inline the loop.
```
Benchmark_bucketMetacache_findCache-32 19200 63490 ns/op 8303 B/op 5 allocs/op
Benchmark_bucketMetacache_findCache-32 20338 58609 ns/op 111 B/op 4 allocs/op
```
Add a reasonable, but still the simplistic benchmark.
Bonus - make nicer zero alloc logging
Perform cleanup operations on copied data. Avoids read locking
data while determining which caches to keep.
Also, reduce the log(N*N) operation to log(N*M) where M caches
with the same root or below when checking potential replacements.
Do listings with prefix filter when bloom filter is dirty.
This will forward the prefix filter to the lister which will make it
only scan the folders/objects with the specified prefix.
If we have a clean bloom filter we try to build a more generally
useful cache so in that case, we will list all objects/folders.
Add `MINIO_API_EXTEND_LIST_CACHE_LIFE` that will extend
the life of generated caches for a while.
This changes caches to remain valid until no updates have been
received for the specified time plus a fixed margin.
This also changes the caches from being invalidated when the *first*
set finishes until the *last* set has finished plus the specified time
has passed.
On extremely long running listings keep the transient list 15 minutes after last update instead of using start time.
Also don't do overlap checks on transient lists.
Add trashcan that keeps recently updated lists after bucket deletion.
All caches were deleted once a bucket was deleted, so caches still running would report errors. Now they are canceled.
Fix `.minio.sys` not being transient.
* Fix caches having EOF marked as a failure.
* Simplify cache updates.
* Provide context for checkMetacacheState failures.
* Log 499 when the client disconnects.
Design: https://gist.github.com/klauspost/025c09b48ed4a1293c917cecfabdf21c
Gist of improvements:
* Cross-server caching and listing will use the same data across servers and requests.
* Lists can be arbitrarily resumed at a constant speed.
* Metadata for all files scanned is stored for streaming retrieval.
* The existing bloom filters controlled by the crawler is used for validating caches.
* Concurrent requests for the same data (or parts of it) will not spawn additional walkers.
* Listing a subdirectory of an existing recursive cache will use the cache.
* All listing operations are fully streamable so the number of objects in a bucket no
longer dictates the amount of memory.
* Listings can be handled by any server within the cluster.
* Caches are cleaned up when out of date or superseded by a more recent one.