There was an io.LimitReader was missing for the 'length'
parameter for ranged requests, that would cause client to
get truncated responses and errors.
fixes#11651
This PR refactors the way we use buffers for O_DIRECT and
to re-use those buffers for messagepack reader writer.
After some extensive benchmarking found that not all objects
have this benefit, and only objects smaller than 64KiB see
this benefit overall.
Benefits are seen from almost all objects from
1KiB - 32KiB
Beyond this no objects see benefit with bulk call approach
as the latency of bytes sent over the wire v/s streaming
content directly from disk negate each other with no
remarkable benefits.
All other optimizations include reuse of msgp.Reader,
msgp.Writer using sync.Pool's for all internode calls.
Use separate sync.Pool for writes/reads
Avoid passing buffers for io.CopyBuffer()
if the writer or reader implement io.WriteTo or io.ReadFrom
respectively then its useless for sync.Pool to allocate
buffers on its own since that will be completely ignored
by the io.CopyBuffer Go implementation.
Improve this wherever we see this to be optimal.
This allows us to be more efficient on memory usage.
```
385 // copyBuffer is the actual implementation of Copy and CopyBuffer.
386 // if buf is nil, one is allocated.
387 func copyBuffer(dst Writer, src Reader, buf []byte) (written int64, err error) {
388 // If the reader has a WriteTo method, use it to do the copy.
389 // Avoids an allocation and a copy.
390 if wt, ok := src.(WriterTo); ok {
391 return wt.WriteTo(dst)
392 }
393 // Similarly, if the writer has a ReadFrom method, use it to do the copy.
394 if rt, ok := dst.(ReaderFrom); ok {
395 return rt.ReadFrom(src)
396 }
```
From readahead package
```
// WriteTo writes data to w until there's no more data to write or when an error occurs.
// The return value n is the number of bytes written.
// Any error encountered during the write is also returned.
func (a *reader) WriteTo(w io.Writer) (n int64, err error) {
if a.err != nil {
return 0, a.err
}
n = 0
for {
err = a.fill()
if err != nil {
return n, err
}
n2, err := w.Write(a.cur.buffer())
a.cur.inc(n2)
n += int64(n2)
if err != nil {
return n, err
}
```
The only purpose of check-dir flag in
ReadVersion is to return 404 when
an object has xl.meta but without data.
This is causing an extract call to the disk
which can be penalizing in case of busy system
where disks receive many concurrent access.
Do listings with prefix filter when bloom filter is dirty.
This will forward the prefix filter to the lister which will make it
only scan the folders/objects with the specified prefix.
If we have a clean bloom filter we try to build a more generally
useful cache so in that case, we will list all objects/folders.
Similar to #10775 for fewer memory allocations, since we use
getOnlineDisks() extensively for listing we should optimize it
further.
Additionally, remove all unused walkers from the storage layer
WriteAll saw 127GB allocs in a 5 minute timeframe for 4MiB buffers
used by `io.CopyBuffer` even if they are pooled.
Since all writers appear to write byte buffers, just send those
instead and write directly. The files are opened through the `os`
package so they have no special properties anyway.
This removes the alloc and copy for each operation.
REST sends content length so a precise alloc can be made.
this reduces allocations in order of magnitude
Also, revert "erasure: delete dangling objects automatically (#10765)"
affects list caching should be investigated.
Design: https://gist.github.com/klauspost/025c09b48ed4a1293c917cecfabdf21c
Gist of improvements:
* Cross-server caching and listing will use the same data across servers and requests.
* Lists can be arbitrarily resumed at a constant speed.
* Metadata for all files scanned is stored for streaming retrieval.
* The existing bloom filters controlled by the crawler is used for validating caches.
* Concurrent requests for the same data (or parts of it) will not spawn additional walkers.
* Listing a subdirectory of an existing recursive cache will use the cache.
* All listing operations are fully streamable so the number of objects in a bucket no
longer dictates the amount of memory.
* Listings can be handled by any server within the cluster.
* Caches are cleaned up when out of date or superseded by a more recent one.
add a hint on the disk to allow for tracking fresh disk
being healed, to allow for restartable heals, and also
use this as a way to track and remove disks.
There are more pending changes where we should move
all the disk formatting logic to backend drives, this
PR doesn't deal with this refactor instead makes it
easier to track healing in the future.
It was observed in VMware vsphere environment during a
pod replacement, `mc admin info` might report incorrect
offline nodes for the replaced drive. This issue eventually
goes away but requires quite a lot of time for all servers
to be in sync.
This PR fixes this behavior properly.
Add context to all (non-trivial) calls to the storage layer.
Contexts are propagated through the REST client.
- `context.TODO()` is left in place for the places where it needs to be added to the caller.
- `endWalkCh` could probably be removed from the walkers, but no changes so far.
The "dangerous" part is that now a caller disconnecting *will* propagate down, so a
"delete" operation will now be interrupted. In some cases we might want to disconnect
this functionality so the operation completes if it has started, leaving the system in a cleaner state.
When crawling never use a disk we know is healing.
Most of the change involves keeping track of the original endpoint on xlStorage
and this also fixes DiskInfo.Endpoint never being populated.
Heal master will print `data-crawl: Disk "http://localhost:9001/data/mindev/data2/xl1" is
Healing, skipping` once on a cycle (no more often than every 5m).
this is to detect situations of corruption disk
format etc errors quickly and keep the disk online
in such scenarios for requests to fail appropriately.
- admin info node offline check is now quicker
- admin info now doesn't duplicate the code
across doing the same checks for disks
- rely on StorageInfo to return appropriate errors
instead of calling locally.
- diskID checks now return proper errors when
disk not found v/s format.json missing.
- add more disk states for more clarity on the
underlying disk errors.
- Add changes to ensure remote disks are not
incorrectly taken online if their order has
changed or are incorrect disks.
- Bring changes to peer to detect disconnection
with separate Health handler, to avoid a
rather expensive call GetLocakDiskIDs()
- Follow up on the same changes for Lockers
as well
- Implement a new xl.json 2.0.0 format to support,
this moves the entire marshaling logic to POSIX
layer, top layer always consumes a common FileInfo
construct which simplifies the metadata reads.
- Implement list object versions
- Migrate to siphash from crchash for new deployments
for object placements.
Fixes#2111
GetDiskID() in storage rest client does not really issue a REST request
to the remote disk, but returns an in-memory value instead.
However, GetDiskID() should return an error when format.json is not
found or for other similar issues (unmounted disks, etc..)
GetDiskID() is only called when formatting disks and getting storage
informatio, hence this commit should not have a performance degradation.
Shuffling arguments that we pass to MinIO server are supported. However,
when that happens, Prometheus returns wrong information about disks usage
and online/offline status.
The commit fixes the issue by avoiding relying on xl.endpoints since
it is not ordered.
The `keepHTTPResponseAlive` would cause errors to be
returned with status OK.
- Add '32' as a filler byte until a response is ready
- '0' to indicate the response is ready to be consumed
- '1' to indicate response has an error which needs
to be returned to the caller
Clear out 'file not found' errors from dir walker, since it may be
in a folder that has been deleted since it was scanned.