Commit Graph

8 Commits

Author SHA1 Message Date
Klaus Post 6968f7237a
Add separate grid reconnection mutex (#18862)
Add separate reconnection mutex

Give more safety around reconnects and make sure a state change isn't missed.

Tested with several runs of `λ go test -race -v -count=500`

Adds separate mutex and doesn't mix in the testing mutex.
2024-01-24 11:49:39 -08:00
Klaus Post feeeef71f1
Add extra protection for grid reconnects (#18840)
Race checks would occasionally show race on handleMsgWg WaitGroup by debug messages (used in test only).

Use the `connMu` mutex to protect this against concurrent Wait/Add.

Fixes #18827
2024-01-22 09:39:06 -08:00
Klaus Post 83bf15a703
grid: Return rejection reason (#18834)
When rejecting incoming grid requests fill out the rejection reason and log it once.

This will give more context when startup is failing. Already logged after a retry on caller.
2024-01-19 10:35:24 -08:00
Klaus Post 479940b7d0
Deallocate huge read buffers (#18813)
If a message buffer is excessively huge, release it back so it isn't kept around forever.
2024-01-17 11:47:42 -08:00
Klaus Post 5f971fea6e
Fix Mux Connect Error (#18567)
`OpMuxConnectError` was not handled correctly.

Remove local checks for single request handlers so they can 
run before being registered locally.

Bonus: Only log IAM bootstrap on startup.
2023-12-01 00:18:04 -08:00
Klaus Post 0bb81f2e9c
Always remove subroute when queuing message on the connection. (#18550) 2023-11-28 11:22:29 -08:00
Klaus Post ca488cce87
Add detailed parameter tracing + custom prefix (#18518)
* Allow per handler custom prefix.
* Add automatic parameter extraction
2023-11-26 01:32:59 -08:00
Klaus Post 51aa59a737
perf: websocket grid connectivity for all internode communication (#18461)
This PR adds a WebSocket grid feature that allows servers to communicate via 
a single two-way connection.

There are two request types:

* Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small
  roundtrips with small payloads.

* Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`,
  which allows for different combinations of full two-way streams with an initial payload.

Only a single stream is created between two machines - and there is, as such, no
server/client relation since both sides can initiate and handle requests. Which server
initiates the request is decided deterministically on the server names.

Requests are made through a mux client and server, which handles message
passing, congestion, cancelation, timeouts, etc.

If a connection is lost, all requests are canceled, and the calling server will try
to reconnect. Registered handlers can operate directly on byte 
slices or use a higher-level generics abstraction.

There is no versioning of handlers/clients, and incompatible changes should
be handled by adding new handlers.

The request path can be changed to a new one for any protocol changes.

First, all servers create a "Manager." The manager must know its address 
as well as all remote addresses. This will manage all connections.
To get a connection to any remote, ask the manager to provide it given
the remote address using.

```
func (m *Manager) Connection(host string) *Connection
```

All serverside handlers must also be registered on the manager. This will
make sure that all incoming requests are served. The number of in-flight 
requests and responses must also be given for streaming requests.

The "Connection" returned manages the mux-clients. Requests issued
to the connection will be sent to the remote.

* `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)`
   performs a single request and returns the result. Any deadline provided on the request is
   forwarded to the server, and canceling the context will make the function return at once.

* `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)`
   will initiate a remote call and send the initial payload.

```Go
// A Stream is a two-way stream.
// All responses *must* be read by the caller.
// If the call is canceled through the context,
//The appropriate error will be returned.
type Stream struct {
	// Responses from the remote server.
	// Channel will be closed after an error or when the remote closes.
	// All responses *must* be read by the caller until either an error is returned or the channel is closed.
	// Canceling the context will cause the context cancellation error to be returned.
	Responses <-chan Response

	// Requests sent to the server.
	// If the handler is defined with 0 incoming capacity this will be nil.
	// Channel *must* be closed to signal the end of the stream.
	// If the request context is canceled, the stream will no longer process requests.
	Requests chan<- []byte
}

type Response struct {
	Msg []byte
	Err error
}
```

There are generic versions of the server/client handlers that allow the use of type
safe implementations for data types that support msgpack marshal/unmarshal.
2023-11-20 17:09:35 -08:00