This commit adds a new package `etag` for dealing
with S3 ETags.
Even though ETag is often viewed as MD5 checksum of
an object, handling S3 ETags correctly is a surprisingly
complex task. While it is true that the ETag corresponds
to the MD5 for the most basic S3 API operations, there are
many exceptions in case of multipart uploads or encryption.
In worse, some S3 clients expect very specific behavior when
it comes to ETags. For example, some clients expect that the
ETag is a double-quoted string and fail otherwise.
Non-AWS compliant ETag handling has been a source of many bugs
in the past.
Therefore, this commit adds a dedicated `etag` package that provides
functionality for parsing, generating and converting S3 ETags.
Further, this commit removes the ETag computation from the `hash`
package. Instead, the `hash` package (i.e. `hash.Reader`) should
focus only on computing and verifying the content-sha256.
One core feature of this commit is to provide a mechanism to
communicate a computed ETag from a low-level `io.Reader` to
a high-level `io.Reader`.
This problem occurs when an S3 server receives a request and
has to compute the ETag of the content. However, the server
may also wrap the initial body with several other `io.Reader`,
e.g. when encrypting or compressing the content:
```
reader := Encrypt(Compress(ETag(content)))
```
In such a case, the ETag should be accessible by the high-level
`io.Reader`.
The `etag` provides a mechanism to wrap `io.Reader` implementations
such that the `ETag` can be accessed by a type-check.
This technique is applied to the PUT, COPY and Upload handlers.
This change moves away from a unified constructor for plaintext and encrypted
usage. NewPutObjReader is simplified for the plain-text reader use. For
encrypted reader use, WithEncryption should be called on an initialized PutObjReader.
Plaintext:
func NewPutObjReader(rawReader *hash.Reader) *PutObjReader
The hash.Reader is used to provide payload size and md5sum to the downstream
consumers. This is different from the previous version in that there is no need
to pass nil values for unused parameters.
Encrypted:
func WithEncryption(encReader *hash.Reader,
key *crypto.ObjectKey) (*PutObjReader, error)
This method sets up encrypted reader along with the key to seal the md5sum
produced by the plain-text reader (already setup when NewPutObjReader was
called).
Usage:
```
pReader := NewPutObjReader(rawReader)
// ... other object handler code goes here
// Prepare the encrypted hashed reader
pReader, err = pReader.WithEncryption(encReader, objEncKey)
```
It looks like from implementation point of view fastjson
parser pool doesn't behave the same way as expected
when dealing many `xl.json` from multiple disks.
The fastjson parser pool usage ends up returning incorrect
xl.json entries for checksums, with references pointing
to older entries. This led to the subtle bug where checksum
info is duplicated from a previous xl.json read of a different
file from different disk.
This is to avoid using unsafe.Pointer type
code dependency for MinIO, this causes
crashes on ARM64 platforms
Refer #8005 collection of runtime crashes due
to unsafe.Pointer usage incorrectly. We have
seen issues like this before when using
jsoniter library in the past.
This PR hopes to fix this using fastjson
This PR adds pass-through, single encryption at gateway and double
encryption support (gateway encryption with pass through of SSE
headers to backend).
If KMS is set up (either with Vault as KMS or using
MINIO_SSE_MASTER_KEY),gateway will automatically perform
single encryption. If MINIO_GATEWAY_SSE is set up in addition to
Vault KMS, double encryption is performed.When neither KMS nor
MINIO_GATEWAY_SSE is set, do a pass through to backend.
When double encryption is specified, MINIO_GATEWAY_SSE can be set to
"C" for SSE-C encryption at gateway and backend, "S3" for SSE-S3
encryption at gateway/backend or both to support more than one option.
Fixes#6323, #6696