Removes the bloom filter since it has so limited usability, often gets saturated anyway and adds a bunch of complexity to the scanner.
Also removes a tiny bit of CPU by each write operation.
Move to using `xl.meta` data structure to keep temporary partInfo,
this allows for a future change where we move to different parts to
different drives.
PUT shall only proceed if pre-conditions are met, the new
code uses
- x-minio-source-mtime
- x-minio-source-etag
to verify if the object indeed needs to be replicated
or not, allowing us to avoid StatObject() call.
This PR is a continuation of the previous change instead
of returning an error, instead trigger a spot heal on the
'xl.meta' and return only after the healing is complete.
This allows for future GETs on the same resource to be
consistent for any version of the object.
xl.meta gets written and never rolled back, however
we definitely need to validate the state that is
persisted on the disk, if there are inconsistencies
- more than write quorum we should return an error
to the client
- if write quorum was achieved however there are
inconsistent xl.meta's we should simply trigger
an MRF on them
The bottom line is delete markers are a nuisance,
most applications are not version aware and this
has simply complicated the version management.
AWS S3 gave an unnecessary complication overhead
for customers, they need to now manage these
markers by applying ILM settings and clean
them up on a regular basis.
To make matters worse all these delete markers
get replicated as well in a replicated setup,
requiring two ILM settings on each site.
This PR is an attempt to address this inferior
implementation by deviating MinIO towards an
idempotent delete marker implementation i.e
MinIO will never create any more than single
consecutive delete markers.
This significantly reduces operational overhead
by making versioning more useful for real data.
This is an S3 spec deviation for pragmatic reasons.