This commit adds the `X-Amz-Server-Side-Encryption-Aws-Kms-Key-Id`
response header to the GET, HEAD, PUT and Download API.
Based on AWS documentation [1] AWS S3 returns the KMS key ID as part
of the response headers.
[1] https://docs.aws.amazon.com/AmazonS3/latest/userguide/specifying-kms-encryption.html
Signed-off-by: Andreas Auernhammer <aead@mail.de>
This commit adds support for SSE-KMS bucket configurations.
Before, the MinIO server did not support SSE-KMS, and therefore,
it was not possible to specify an SSE-KMS bucket config.
Now, this is possible. For example:
```
mc encrypt set sse-kms some-key <alias>/my-bucket
```
Further, this commit fixes an issue caused by not supporting
SSE-KMS bucket configuration and switching to SSE-KMS as default
SSE method.
Before, the server just checked whether an SSE bucket config was
present (not which type of SSE config) and applied the default
SSE method (which was switched from SSE-S3 to SSE-KMS).
This caused objects to get encrypted with SSE-KMS even though a
SSE-S3 bucket config was present.
This issue is fixed as a side-effect of this commit.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
This commit adds basic SSE-KMS support.
Now, a client can specify the SSE-KMS headers
(algorithm, optional key-id, optional context)
such that the object gets encrypted using the
SSE-KMS method. Further, auto-encryption now
defaults to SSE-KMS.
This commit does not try to do any refactoring
and instead tries to implement SSE-KMS as a minimal
change to the code base. However, refactoring the entire
crypto-related code is planned - but needs a separate
effort.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
This commit adds basic SSE-KMS support.
Now, a client can specify the SSE-KMS headers
(algorithm, optional key-id, optional context)
such that the object gets encrypted using the
SSE-KMS method. Further, auto-encryption now
defaults to SSE-KMS.
This commit does not try to do any refactoring
and instead tries to implement SSE-KMS as a minimal
change to the code base. However, refactoring the entire
crypto-related code is planned - but needs a separate
effort.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
Co-authored-by: Klaus Post <klauspost@gmail.com>
https://github.com/minio/console takes over the functionality for the
future object browser development
Signed-off-by: Harshavardhana <harsha@minio.io>
With this change, MinIO's ILM supports transitioning objects to a remote tier.
This change includes support for Azure Blob Storage, AWS S3 compatible object
storage incl. MinIO and Google Cloud Storage as remote tier storage backends.
Some new additions include:
- Admin APIs remote tier configuration management
- Simple journal to track remote objects to be 'collected'
This is used by object API handlers which 'mutate' object versions by
overwriting/replacing content (Put/CopyObject) or removing the version
itself (e.g DeleteObjectVersion).
- Rework of previous ILM transition to fit the new model
In the new model, a storage class (a.k.a remote tier) is defined by the
'remote' object storage type (one of s3, azure, GCS), bucket name and a
prefix.
* Fixed bugs, review comments, and more unit-tests
- Leverage inline small object feature
- Migrate legacy objects to the latest object format before transitioning
- Fix restore to particular version if specified
- Extend SharedDataDirCount to handle transitioned and restored objects
- Restore-object should accept version-id for version-suspended bucket (#12091)
- Check if remote tier creds have sufficient permissions
- Bonus minor fixes to existing error messages
Co-authored-by: Poorna Krishnamoorthy <poorna@minio.io>
Co-authored-by: Krishna Srinivas <krishna@minio.io>
Signed-off-by: Harshavardhana <harsha@minio.io>
When an error is reported it is ignored and zipping continues with the next object.
However, if there is an error it will write a response to `writeWebErrorResponse(w, err)`, but responses are still being built.
Fixes#12082
Bonus: Exclude common compressed image types.
- collect real time replication metrics for prometheus.
- add pending_count, failed_count metric for total pending/failed replication operations.
- add API to get replication metrics
- add MRF worker to handle spill-over replication operations
- multiple issues found with replication
- fixes an issue when client sends a bucket
name with `/` at the end from SetRemoteTarget
API call make sure to trim the bucket name to
avoid any extra `/`.
- hold write locks in GetObjectNInfo during replication
to ensure that object version stack is not overwritten
while reading the content.
- add additional protection during WriteMetadata() to
ensure that we always write a valid FileInfo{} and avoid
ever writing empty FileInfo{} to the lowest layers.
Co-authored-by: Poorna Krishnamoorthy <poorna@minio.io>
Co-authored-by: Harshavardhana <harsha@minio.io>
replication didn't work as expected when deletion of
delete markers was requested in DeleteMultipleObjects
API, this is due to incorrect lookup elements being
used to look for delete markers.
Cases where we have applications making request
for `//` in object names make sure that all
are normalized to `/` and all such requests that
are prefixed '/' are removed. To ensure a
consistent view from all operations.
Implicit permissions for any user is to be allowed to
change their own password, we need to restrict this
further even if there is an implicit allow for this
scenario - we have to honor Deny statements if they
are specified.
This commit adds a new package `etag` for dealing
with S3 ETags.
Even though ETag is often viewed as MD5 checksum of
an object, handling S3 ETags correctly is a surprisingly
complex task. While it is true that the ETag corresponds
to the MD5 for the most basic S3 API operations, there are
many exceptions in case of multipart uploads or encryption.
In worse, some S3 clients expect very specific behavior when
it comes to ETags. For example, some clients expect that the
ETag is a double-quoted string and fail otherwise.
Non-AWS compliant ETag handling has been a source of many bugs
in the past.
Therefore, this commit adds a dedicated `etag` package that provides
functionality for parsing, generating and converting S3 ETags.
Further, this commit removes the ETag computation from the `hash`
package. Instead, the `hash` package (i.e. `hash.Reader`) should
focus only on computing and verifying the content-sha256.
One core feature of this commit is to provide a mechanism to
communicate a computed ETag from a low-level `io.Reader` to
a high-level `io.Reader`.
This problem occurs when an S3 server receives a request and
has to compute the ETag of the content. However, the server
may also wrap the initial body with several other `io.Reader`,
e.g. when encrypting or compressing the content:
```
reader := Encrypt(Compress(ETag(content)))
```
In such a case, the ETag should be accessible by the high-level
`io.Reader`.
The `etag` provides a mechanism to wrap `io.Reader` implementations
such that the `ETag` can be accessed by a type-check.
This technique is applied to the PUT, COPY and Upload handlers.
Skip notifications on objects that might have had
an error during deletion, this also avoids unnecessary
replication attempt on such objects.
Refactor some places to make sure that we have notified
the client before we
- notify
- schedule for replication
- lifecycle etc.
This change moves away from a unified constructor for plaintext and encrypted
usage. NewPutObjReader is simplified for the plain-text reader use. For
encrypted reader use, WithEncryption should be called on an initialized PutObjReader.
Plaintext:
func NewPutObjReader(rawReader *hash.Reader) *PutObjReader
The hash.Reader is used to provide payload size and md5sum to the downstream
consumers. This is different from the previous version in that there is no need
to pass nil values for unused parameters.
Encrypted:
func WithEncryption(encReader *hash.Reader,
key *crypto.ObjectKey) (*PutObjReader, error)
This method sets up encrypted reader along with the key to seal the md5sum
produced by the plain-text reader (already setup when NewPutObjReader was
called).
Usage:
```
pReader := NewPutObjReader(rawReader)
// ... other object handler code goes here
// Prepare the encrypted hashed reader
pReader, err = pReader.WithEncryption(encReader, objEncKey)
```
- using miniogo.ObjectInfo.UserMetadata is not correct
- using UserTags from Map->String() can change order
- ContentType comparison needs to be removed.
- Compare both lowercase and uppercase key names.
- do not silently error out constructing PutObjectOptions
if tag parsing fails
- avoid notification for empty object info, failed operations
should rely on valid objInfo for notification in all
situations
- optimize copyObject implementation, also introduce a new
replication event
- clone ObjectInfo() before scheduling for replication
- add additional headers for comparison
- remove strings.EqualFold comparison avoid unexpected bugs
- fix pool based proxying with multiple pools
- compare only specific metadata
Co-authored-by: Poorna Krishnamoorthy <poornas@users.noreply.github.com>
This commit refactors the SSE implementation and add
S3-compatible SSE-KMS context handling.
SSE-KMS differs from SSE-S3 in two main aspects:
1. The client can request a particular key and
specify a KMS context as part of the request.
2. The ETag of an SSE-KMS encrypted object is not
the MD5 sum of the object content.
This commit only focuses on the 1st aspect.
A client can send an optional SSE context when using
SSE-KMS. This context is remembered by the S3 server
such that the client does not have to specify the
context again (during multipart PUT / GET / HEAD ...).
The crypto. context also includes the bucket/object
name to prevent renaming objects at the backend.
Now, AWS S3 behaves as following:
- If the user does not provide a SSE-KMS context
it does not store one - resp. does not include
the SSE-KMS context header in the response (e.g. HEAD).
- If the user specifies a SSE-KMS context without
the bucket/object name then AWS stores the exact
context the client provided but adds the bucket/object
name internally. The response contains the KMS context
without the bucket/object name.
- If the user specifies a SSE-KMS context with
the bucket/object name then AWS again stores the exact
context provided by the client. The response contains
the KMS context with the bucket/object name.
This commit implements this behavior w.r.t. SSE-KMS.
However, as of now, no such object can be created since
the server rejects SSE-KMS encryption requests.
This commit is one stepping stone for SSE-KMS support.
Co-authored-by: Harshavardhana <harsha@minio.io>
STS tokens can be obtained by using local APIs
once the remote JWT token is presented, current
code was not validating the incoming token in the
first place and was incorrectly making a network
operation using that token.
For the most part this always works without issues,
but under adversarial scenarios it exposes client
to hand-craft a request that can reach internal
services without authentication.
This kind of proxying should be avoided before
validating the incoming token.
```
mc admin config set alias/ storage_class standard=EC:3
```
should only succeed if parity ratio is valid for all
server pools, if not we should fail proactively.
This PR also needs to bring other changes now that
we need to cater for variadic drive counts per pool.
Bonus fixes also various bugs reproduced with
- GetObjectWithPartNumber()
- CopyObjectPartWithOffsets()
- CopyObjectWithMetadata()
- PutObjectPart,PutObject with truncated streams
Synchronous replication can be enabled by setting the --sync
flag while adding a remote replication target.
This PR also adds proxying on GET/HEAD to another node in a
active-active replication setup in the event of a 404 on the current node.
This commit refactors the code in `cmd/crypto`
and separates SSE-S3, SSE-C and SSE-KMS.
This commit should not cause any behavior change
except for:
- `IsRequested(http.Header)`
which now returns the requested type {SSE-C, SSE-S3,
SSE-KMS} and does not consider SSE-C copy headers.
However, SSE-C copy headers alone are anyway not valid.
additionally also configure http2 healthcheck
values to quickly detect unstable connections
and let them timeout.
also use single transport for proxying requests
with missing nextMarker with delimiter based listing,
top level prefixes beyond 4500 or max-keys value
wouldn't be sent back for client to ask for the next
batch.
reproduced at a customer deployment, create prefixes
as shown below
```
for year in $(seq 2017 2020)
do
for month in {01..12}
do for day in {01..31}
do
mc -q cp file myminio/testbucket/dir/day_id=$year-$month-$day/;
done
done
done
```
Then perform
```
aws s3api --profile minio --endpoint-url http://localhost:9000 list-objects \
--bucket testbucket --prefix dir/ --delimiter / --max-keys 1000
```
You shall see missing NextMarker, this would disallow listing beyond max-keys
requested and also disallow beyond 4500 (maxKeyObjectList) prefixes being listed
because client wouldn't know the NextMarker available.
This PR addresses this situation properly by making the implementation
more spec compatible. i.e NextMarker in-fact can be either an object, a prefix
with delimiter depending on the input operation.
This issue was introduced after the list caching changes and has been present
for a while.
Delete marker replication is implemented for V2
configuration specified in AWS spec (though AWS
allows it only in the V1 configuration).
This PR also brings in a MinIO only extension of
replicating permanent deletes, i.e. deletes specifying
version id are replicated to target cluster.
configurable remote transport timeouts for some special cases
where this value needs to be bumped to a higher value when
transferring large data between federated instances.