This commit fixes a bug introduced by af0c65b.
When there is no / an empty client-provided SSE-KMS
context the `ParseMetadata` may return a nil map
(`kms.Context`).
When unsealing the object key we must check that
the context is nil before assigning a key-value pair.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
This commit adds basic SSE-KMS support.
Now, a client can specify the SSE-KMS headers
(algorithm, optional key-id, optional context)
such that the object gets encrypted using the
SSE-KMS method. Further, auto-encryption now
defaults to SSE-KMS.
This commit does not try to do any refactoring
and instead tries to implement SSE-KMS as a minimal
change to the code base. However, refactoring the entire
crypto-related code is planned - but needs a separate
effort.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
This commit adds basic SSE-KMS support.
Now, a client can specify the SSE-KMS headers
(algorithm, optional key-id, optional context)
such that the object gets encrypted using the
SSE-KMS method. Further, auto-encryption now
defaults to SSE-KMS.
This commit does not try to do any refactoring
and instead tries to implement SSE-KMS as a minimal
change to the code base. However, refactoring the entire
crypto-related code is planned - but needs a separate
effort.
Signed-off-by: Andreas Auernhammer <aead@mail.de>
Co-authored-by: Klaus Post <klauspost@gmail.com>
This commit introduces a new package `pkg/kms`.
It contains basic types and functions to interact
with various KMS implementations.
This commit also moves KMS-related code from `cmd/crypto`
to `pkg/kms`. Now, it is possible to implement a KMS-based
config data encryption in the `pkg/config` package.
This commit refactors the SSE implementation and add
S3-compatible SSE-KMS context handling.
SSE-KMS differs from SSE-S3 in two main aspects:
1. The client can request a particular key and
specify a KMS context as part of the request.
2. The ETag of an SSE-KMS encrypted object is not
the MD5 sum of the object content.
This commit only focuses on the 1st aspect.
A client can send an optional SSE context when using
SSE-KMS. This context is remembered by the S3 server
such that the client does not have to specify the
context again (during multipart PUT / GET / HEAD ...).
The crypto. context also includes the bucket/object
name to prevent renaming objects at the backend.
Now, AWS S3 behaves as following:
- If the user does not provide a SSE-KMS context
it does not store one - resp. does not include
the SSE-KMS context header in the response (e.g. HEAD).
- If the user specifies a SSE-KMS context without
the bucket/object name then AWS stores the exact
context the client provided but adds the bucket/object
name internally. The response contains the KMS context
without the bucket/object name.
- If the user specifies a SSE-KMS context with
the bucket/object name then AWS again stores the exact
context provided by the client. The response contains
the KMS context with the bucket/object name.
This commit implements this behavior w.r.t. SSE-KMS.
However, as of now, no such object can be created since
the server rejects SSE-KMS encryption requests.
This commit is one stepping stone for SSE-KMS support.
Co-authored-by: Harshavardhana <harsha@minio.io>
This commit refactors the code in `cmd/crypto`
and separates SSE-S3, SSE-C and SSE-KMS.
This commit should not cause any behavior change
except for:
- `IsRequested(http.Header)`
which now returns the requested type {SSE-C, SSE-S3,
SSE-KMS} and does not consider SSE-C copy headers.
However, SSE-C copy headers alone are anyway not valid.