Design: https://gist.github.com/klauspost/025c09b48ed4a1293c917cecfabdf21c
Gist of improvements:
* Cross-server caching and listing will use the same data across servers and requests.
* Lists can be arbitrarily resumed at a constant speed.
* Metadata for all files scanned is stored for streaming retrieval.
* The existing bloom filters controlled by the crawler is used for validating caches.
* Concurrent requests for the same data (or parts of it) will not spawn additional walkers.
* Listing a subdirectory of an existing recursive cache will use the cache.
* All listing operations are fully streamable so the number of objects in a bucket no
longer dictates the amount of memory.
* Listings can be handled by any server within the cluster.
* Caches are cleaned up when out of date or superseded by a more recent one.
- Implement a new xl.json 2.0.0 format to support,
this moves the entire marshaling logic to POSIX
layer, top layer always consumes a common FileInfo
construct which simplifies the metadata reads.
- Implement list object versions
- Migrate to siphash from crchash for new deployments
for object placements.
Fixes#2111
Bulk delete at storage level in Multiple Delete Objects API
In order to accelerate bulk delete in Multiple Delete objects API,
a new bulk delete is introduced in storage layer, which will accept
a list of objects to delete rather than only one. Consequently,
a new API is also need to be added to Object API.
Different gateway implementations due to different backend
API errors, might return different unsupported errors at
our handler layer. Current code posed a problem for us because
this information was lost and we would convert it to InternalError
in this situation all S3 clients end up retrying the request.
To avoid this unexpected situation implement a way to support
this cleanly such that the underlying information is not lost
which is returned by gateway.
To conform with AWS S3 Spec on ETag for SSE-S3 encrypted objects,
encrypt client sent MD5Sum and store it on backend as ETag.Extend
this behavior to SSE-C encrypted objects.
The new call combines GetObjectInfo and GetObject, and returns an
object with a ReadCloser interface.
Also adds a number of end-to-end encryption tests at the handler
level.
- remove old bucket policy handling
- add new policy handling
- add new policy handling unit tests
This patch brings support to bucket policy to have more control not
limiting to anonymous. Bucket owner controls to allow/deny any rest
API.
For example server side encryption can be controlled by allowing
PUT/GET objects with encryptions including bucket owner.
- getBucketLocation
- headBucket
- deleteBucket
Should return 404 or NoSuchBucket even for invalid bucket names, invalid
bucket names are only validated during MakeBucket operation
This PR implements an object layer which
combines input erasure sets of XL layers
into a unified namespace.
This object layer extends the existing
erasure coded implementation, it is assumed
in this design that providing > 16 disks is
a static configuration as well i.e if you started
the setup with 32 disks with 4 sets 8 disks per
pack then you would need to provide 4 sets always.
Some design details and restrictions:
- Objects are distributed using consistent ordering
to a unique erasure coded layer.
- Each pack has its own dsync so locks are synchronized
properly at pack (erasure layer).
- Each pack still has a maximum of 16 disks
requirement, you can start with multiple
such sets statically.
- Static sets set of disks and cannot be
changed, there is no elastic expansion allowed.
- Static sets set of disks and cannot be
changed, there is no elastic removal allowed.
- ListObjects() across sets can be noticeably
slower since List happens on all servers,
and is merged at this sets layer.
Fixes#5465Fixes#5464Fixes#5461Fixes#5460Fixes#5459Fixes#5458Fixes#5460Fixes#5488Fixes#5489Fixes#5497Fixes#5496
Verify() was being called by caller after the data
has been successfully read after io.EOF. This disconnection
opens a race under concurrent access to such an object.
Verification is not necessary outside of Read() call,
we can simply just do checksum verification right inside
Read() call at io.EOF.
This approach simplifies the usage.
This change refactor the ObjectLayer PutObject and PutObjectPart
functions. Instead of passing an io.Reader and a size to PUT operations
ObejectLayer expects an HashReader.
A HashReader verifies the MD5 sum (and SHA256 sum if required) of the object.
This change updates all all PutObject(Part) calls and removes unnecessary code
in all ObjectLayer implementations.
Fixes#4923