mirror of
https://github.com/minio/minio.git
synced 2025-01-25 13:43:17 -05:00
vendor: update reedsolomon package with new changes. (#2870)
- Cached inverse matrices for better reconstruct performance. - New error reconstruction required is returned, helpful in initiating healing.
This commit is contained in:
parent
1e5e213d24
commit
ed676667d0
160
vendor/github.com/klauspost/reedsolomon/inversion_tree.go
generated
vendored
Normal file
160
vendor/github.com/klauspost/reedsolomon/inversion_tree.go
generated
vendored
Normal file
@ -0,0 +1,160 @@
|
||||
/**
|
||||
* A thread-safe tree which caches inverted matrices.
|
||||
*
|
||||
* Copyright 2016, Peter Collins
|
||||
*/
|
||||
|
||||
package reedsolomon
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"sync"
|
||||
)
|
||||
|
||||
// The tree uses a Reader-Writer mutex to make it thread-safe
|
||||
// when accessing cached matrices and inserting new ones.
|
||||
type inversionTree struct {
|
||||
mutex *sync.RWMutex
|
||||
root inversionNode
|
||||
}
|
||||
|
||||
type inversionNode struct {
|
||||
matrix matrix
|
||||
children []*inversionNode
|
||||
}
|
||||
|
||||
// newInversionTree initializes a tree for storing inverted matrices.
|
||||
// Note that the root node is the identity matrix as it implies
|
||||
// there were no errors with the original data.
|
||||
func newInversionTree(dataShards, parityShards int) inversionTree {
|
||||
identity, _ := identityMatrix(dataShards)
|
||||
root := inversionNode{
|
||||
matrix: identity,
|
||||
children: make([]*inversionNode, dataShards+parityShards),
|
||||
}
|
||||
return inversionTree{
|
||||
mutex: &sync.RWMutex{},
|
||||
root: root,
|
||||
}
|
||||
}
|
||||
|
||||
// GetInvertedMatrix returns the cached inverted matrix or nil if it
|
||||
// is not found in the tree keyed on the indices of invalid rows.
|
||||
func (t inversionTree) GetInvertedMatrix(invalidIndices []int) matrix {
|
||||
// Lock the tree for reading before accessing the tree.
|
||||
t.mutex.RLock()
|
||||
defer t.mutex.RUnlock()
|
||||
|
||||
// If no invalid indices were give we should return the root
|
||||
// identity matrix.
|
||||
if len(invalidIndices) == 0 {
|
||||
return t.root.matrix
|
||||
}
|
||||
|
||||
// Recursively search for the inverted matrix in the tree, passing in
|
||||
// 0 as the parent index as we start at the root of the tree.
|
||||
return t.root.getInvertedMatrix(invalidIndices, 0)
|
||||
}
|
||||
|
||||
// errAlreadySet is returned if the root node matrix is overwritten
|
||||
var errAlreadySet = errors.New("the root node identity matrix is already set")
|
||||
|
||||
// InsertInvertedMatrix inserts a new inverted matrix into the tree
|
||||
// keyed by the indices of invalid rows. The total number of shards
|
||||
// is required for creating the proper length lists of child nodes for
|
||||
// each node.
|
||||
func (t inversionTree) InsertInvertedMatrix(invalidIndices []int, matrix matrix, shards int) error {
|
||||
// If no invalid indices were given then we are done because the
|
||||
// root node is already set with the identity matrix.
|
||||
if len(invalidIndices) == 0 {
|
||||
return errAlreadySet
|
||||
}
|
||||
|
||||
if !matrix.IsSquare() {
|
||||
return errNotSquare
|
||||
}
|
||||
|
||||
// Lock the tree for writing and reading before accessing the tree.
|
||||
t.mutex.Lock()
|
||||
defer t.mutex.Unlock()
|
||||
|
||||
// Recursively create nodes for the inverted matrix in the tree until
|
||||
// we reach the node to insert the matrix to. We start by passing in
|
||||
// 0 as the parent index as we start at the root of the tree.
|
||||
t.root.insertInvertedMatrix(invalidIndices, matrix, shards, 0)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (n inversionNode) getInvertedMatrix(invalidIndices []int, parent int) matrix {
|
||||
// Get the child node to search next from the list of children. The
|
||||
// list of children starts relative to the parent index passed in
|
||||
// because the indices of invalid rows is sorted (by default). As we
|
||||
// search recursively, the first invalid index gets popped off the list,
|
||||
// so when searching through the list of children, use that first invalid
|
||||
// index to find the child node.
|
||||
firstIndex := invalidIndices[0]
|
||||
node := n.children[firstIndex-parent]
|
||||
|
||||
// If the child node doesn't exist in the list yet, fail fast by
|
||||
// returning, so we can construct and insert the proper inverted matrix.
|
||||
if node == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
// If there's more than one invalid index left in the list we should
|
||||
// keep searching recursively.
|
||||
if len(invalidIndices) > 1 {
|
||||
// Search recursively on the child node by passing in the invalid indices
|
||||
// with the first index popped off the front. Also the parent index to
|
||||
// pass down is the first index plus one.
|
||||
return node.getInvertedMatrix(invalidIndices[1:], firstIndex+1)
|
||||
}
|
||||
// If there aren't any more invalid indices to search, we've found our
|
||||
// node. Return it, however keep in mind that the matrix could still be
|
||||
// nil because intermediary nodes in the tree are created sometimes with
|
||||
// their inversion matrices uninitialized.
|
||||
return node.matrix
|
||||
}
|
||||
|
||||
func (n inversionNode) insertInvertedMatrix(invalidIndices []int, matrix matrix, shards, parent int) {
|
||||
// As above, get the child node to search next from the list of children.
|
||||
// The list of children starts relative to the parent index passed in
|
||||
// because the indices of invalid rows is sorted (by default). As we
|
||||
// search recursively, the first invalid index gets popped off the list,
|
||||
// so when searching through the list of children, use that first invalid
|
||||
// index to find the child node.
|
||||
firstIndex := invalidIndices[0]
|
||||
node := n.children[firstIndex-parent]
|
||||
|
||||
// If the child node doesn't exist in the list yet, create a new
|
||||
// node because we have the writer lock and add it to the list
|
||||
// of children.
|
||||
if node == nil {
|
||||
// Make the length of the list of children equal to the number
|
||||
// of shards minus the first invalid index because the list of
|
||||
// invalid indices is sorted, so only this length of errors
|
||||
// are possible in the tree.
|
||||
node = &inversionNode{
|
||||
children: make([]*inversionNode, shards-firstIndex),
|
||||
}
|
||||
// Insert the new node into the tree at the first index relative
|
||||
// to the parent index that was given in this recursive call.
|
||||
n.children[firstIndex-parent] = node
|
||||
}
|
||||
|
||||
// If there's more than one invalid index left in the list we should
|
||||
// keep searching recursively in order to find the node to add our
|
||||
// matrix.
|
||||
if len(invalidIndices) > 1 {
|
||||
// As above, search recursively on the child node by passing in
|
||||
// the invalid indices with the first index popped off the front.
|
||||
// Also the total number of shards and parent index are passed down
|
||||
// which is equal to the first index plus one.
|
||||
node.insertInvertedMatrix(invalidIndices[1:], matrix, shards, firstIndex+1)
|
||||
} else {
|
||||
// If there aren't any more invalid indices to search, we've found our
|
||||
// node. Cache the inverted matrix in this node.
|
||||
node.matrix = matrix
|
||||
}
|
||||
}
|
83
vendor/github.com/klauspost/reedsolomon/reedsolomon.go
generated
vendored
83
vendor/github.com/klauspost/reedsolomon/reedsolomon.go
generated
vendored
@ -81,6 +81,7 @@ type reedSolomon struct {
|
||||
ParityShards int // Number of parity shards, should not be modified.
|
||||
Shards int // Total number of shards. Calculated, and should not be modified.
|
||||
m matrix
|
||||
tree inversionTree
|
||||
parity [][]byte
|
||||
}
|
||||
|
||||
@ -128,6 +129,13 @@ func New(dataShards, parityShards int) (Encoder, error) {
|
||||
top, _ = top.Invert()
|
||||
r.m, _ = vm.Multiply(top)
|
||||
|
||||
// Inverted matrices are cached in a tree keyed by the indices
|
||||
// of the invalid rows of the data to reconstruct.
|
||||
// The inversion root node will have the identity matrix as
|
||||
// its inversion matrix because it implies there are no errors
|
||||
// with the original data.
|
||||
r.tree = newInversionTree(dataShards, parityShards)
|
||||
|
||||
r.parity = make([][]byte, parityShards)
|
||||
for i := range r.parity {
|
||||
r.parity[i] = r.m[dataShards+i]
|
||||
@ -380,36 +388,61 @@ func (r reedSolomon) Reconstruct(shards [][]byte) error {
|
||||
return ErrTooFewShards
|
||||
}
|
||||
|
||||
// Pull out the rows of the matrix that correspond to the
|
||||
// shards that we have and build a square matrix. This
|
||||
// matrix could be used to generate the shards that we have
|
||||
// from the original data.
|
||||
//
|
||||
// Also, pull out an array holding just the shards that
|
||||
// Pull out an array holding just the shards that
|
||||
// correspond to the rows of the submatrix. These shards
|
||||
// will be the input to the decoding process that re-creates
|
||||
// the missing data shards.
|
||||
subMatrix, _ := newMatrix(r.DataShards, r.DataShards)
|
||||
//
|
||||
// Also, create an array of indices of the valid rows we do have
|
||||
// and the invalid rows we don't have up until we have enough valid rows.
|
||||
subShards := make([][]byte, r.DataShards)
|
||||
validIndices := make([]int, r.DataShards)
|
||||
invalidIndices := make([]int, 0)
|
||||
subMatrixRow := 0
|
||||
for matrixRow := 0; matrixRow < r.Shards && subMatrixRow < r.DataShards; matrixRow++ {
|
||||
if len(shards[matrixRow]) != 0 {
|
||||
for c := 0; c < r.DataShards; c++ {
|
||||
subMatrix[subMatrixRow][c] = r.m[matrixRow][c]
|
||||
}
|
||||
subShards[subMatrixRow] = shards[matrixRow]
|
||||
validIndices[subMatrixRow] = matrixRow
|
||||
subMatrixRow++
|
||||
} else {
|
||||
invalidIndices = append(invalidIndices, matrixRow)
|
||||
}
|
||||
}
|
||||
|
||||
// Invert the matrix, so we can go from the encoded shards
|
||||
// back to the original data. Then pull out the row that
|
||||
// generates the shard that we want to decode. Note that
|
||||
// since this matrix maps back to the original data, it can
|
||||
// be used to create a data shard, but not a parity shard.
|
||||
dataDecodeMatrix, err := subMatrix.Invert()
|
||||
if err != nil {
|
||||
return err
|
||||
// Attempt to get the cached inverted matrix out of the tree
|
||||
// based on the indices of the invalid rows.
|
||||
dataDecodeMatrix := r.tree.GetInvertedMatrix(invalidIndices)
|
||||
|
||||
// If the inverted matrix isn't cached in the tree yet we must
|
||||
// construct it ourselves and insert it into the tree for the
|
||||
// future. In this way the inversion tree is lazily loaded.
|
||||
if dataDecodeMatrix == nil {
|
||||
// Pull out the rows of the matrix that correspond to the
|
||||
// shards that we have and build a square matrix. This
|
||||
// matrix could be used to generate the shards that we have
|
||||
// from the original data.
|
||||
subMatrix, _ := newMatrix(r.DataShards, r.DataShards)
|
||||
for subMatrixRow, validIndex := range validIndices {
|
||||
for c := 0; c < r.DataShards; c++ {
|
||||
subMatrix[subMatrixRow][c] = r.m[validIndex][c]
|
||||
}
|
||||
}
|
||||
// Invert the matrix, so we can go from the encoded shards
|
||||
// back to the original data. Then pull out the row that
|
||||
// generates the shard that we want to decode. Note that
|
||||
// since this matrix maps back to the original data, it can
|
||||
// be used to create a data shard, but not a parity shard.
|
||||
dataDecodeMatrix, err = subMatrix.Invert()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Cache the inverted matrix in the tree for future use keyed on the
|
||||
// indices of the invalid rows.
|
||||
err = r.tree.InsertInvertedMatrix(invalidIndices, dataDecodeMatrix, r.Shards)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
// Re-create any data shards that were missing.
|
||||
@ -487,12 +520,18 @@ func (r reedSolomon) Split(data []byte) ([][]byte, error) {
|
||||
return dst, nil
|
||||
}
|
||||
|
||||
// ErrReconstructRequired is returned if too few data shards are intact and a
|
||||
// reconstruction is required before you can successfully join the shards.
|
||||
var ErrReconstructRequired = errors.New("reconstruction required as one or more required data shards are nil")
|
||||
|
||||
// Join the shards and write the data segment to dst.
|
||||
//
|
||||
// Only the data shards are considered.
|
||||
// You must supply the exact output size you want.
|
||||
//
|
||||
// If there are to few shards given, ErrTooFewShards will be returned.
|
||||
// If the total data size is less than outSize, ErrShortData will be returned.
|
||||
// If one or more required data shards are nil, ErrReconstructRequired will be returned.
|
||||
func (r reedSolomon) Join(dst io.Writer, shards [][]byte, outSize int) error {
|
||||
// Do we have enough shards?
|
||||
if len(shards) < r.DataShards {
|
||||
@ -503,7 +542,15 @@ func (r reedSolomon) Join(dst io.Writer, shards [][]byte, outSize int) error {
|
||||
// Do we have enough data?
|
||||
size := 0
|
||||
for _, shard := range shards {
|
||||
if shard == nil {
|
||||
return ErrReconstructRequired
|
||||
}
|
||||
size += len(shard)
|
||||
|
||||
// Do we have enough data already?
|
||||
if size >= outSize {
|
||||
break
|
||||
}
|
||||
}
|
||||
if size < outSize {
|
||||
return ErrShortData
|
||||
|
5
vendor/vendor.json
vendored
5
vendor/vendor.json
vendored
@ -73,9 +73,10 @@
|
||||
"revisionTime": "2016-01-06T11:44:51+01:00"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "XRii0aDqXZvztXflEB2EE9TRoks=",
|
||||
"path": "github.com/klauspost/reedsolomon",
|
||||
"revision": "467733eb9c209042fb37d2074a5b6be33a529be0",
|
||||
"revisionTime": "2016-07-06T21:06:00+02:00"
|
||||
"revision": "c54154da9e35cab25232314cf69ab9d78447f9a5",
|
||||
"revisionTime": "2016-09-12T19:31:07Z"
|
||||
},
|
||||
{
|
||||
"checksumSHA1": "dNYxHiBLalTqluak2/Z8c3RsSEM=",
|
||||
|
Loading…
x
Reference in New Issue
Block a user