Cleanup Kubernetes documentation (#6861)

Also add details on why Readiness checks are not recommended for Minio
StatefulSets.
This commit is contained in:
Nitish Tiwari 2018-11-26 03:04:20 +05:30 committed by kannappanr
parent 9e3fce441e
commit dd8c2aa5c6

View File

@ -8,36 +8,20 @@ Kubernetes concepts like Deployments and StatefulSets provide perfect platform t
## Table of Contents ## Table of Contents
- [Prerequisites](#prerequisites) - [Prerequisites](#Prerequisites)
- [Minio Standalone Server Deployment](#minio-standalone-server-deployment) - [Minio Standalone Server Deployment](#minio-standalone-server-deployment)
- [Standalone Quickstart](#standalone-quickstart)
- [Create Persistent Volume Claim](#create-persistent-volume-claim)
- [Create Deployment](#create-minio-deployment)
- [Create LoadBalancer Service](#create-minio-service)
- [Update existing Minio Deployment](#update-existing-minio-deployment)
- [Resource cleanup](#standalone-resource-cleanup)
- [Minio Distributed Server Deployment](#minio-distributed-server-deployment) - [Minio Distributed Server Deployment](#minio-distributed-server-deployment)
- [Distributed Quickstart](#distributed-quickstart)
- [Create Minio Headless Service](#create-minio-headless-service)
- [Create Minio Statefulset](#create-minio-statefulset)
- [Create LoadBalancer Service](#create-minio-service)
- [Update existing Minio StatefulSet](#update-existing-minio-statefulset)
- [Deploying on cluster nodes with local host path](#deploying-on-cluster-nodes-with-local-host-path)
- [Resource cleanup](#distributed-resource-cleanup)
- [Minio GCS Gateway Deployment](#minio-gcs-gateway-deployment) - [Minio GCS Gateway Deployment](#minio-gcs-gateway-deployment)
- [GCS Gateway Quickstart](#gcs-gateway-quickstart) - [Monitoring Minio in Kubernetes](#monitoring-minio)
- [Create GCS Credentials Secret](#create-gcs-credentials-secret)
- [Create Minio GCS Gateway Deployment](#create-minio-gcs-gateway-deployment) <a name="Prerequisites"></a>
- [Create Minio LoadBalancer Service](#create-minio-loadbalancer-service)
- [Update Existing Minio GCS Deployment](#update-existing-minio-gcs-deployment)
- [Resource cleanup](#gcs-gateway-resource-cleanup)
## Prerequisites ## Prerequisites
To run this example, you need Kubernetes version >=1.4 cluster installed and running, and that you have installed the [`kubectl`](https://kubernetes.io/docs/tasks/kubectl/install/) command line tool in your path. Please see the [getting started guides](https://kubernetes.io/docs/getting-started-guides/) for installation instructions for your platform. To run this example, you need Kubernetes version >=1.4 cluster installed and running, and that you have installed the [`kubectl`](https://kubernetes.io/docs/tasks/kubectl/install/) command line tool in your path. Please see the [getting started guides](https://kubernetes.io/docs/getting-started-guides/) for installation instructions for your platform.
<a name="minio-standalone-server-deployment"></a>
## Minio Standalone Server Deployment ## Minio Standalone Server Deployment
The following section describes the process to deploy standalone [Minio](https://minio.io/) server on Kubernetes. The deployment uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub. The following section describes the process to deploy standalone [Minio](https://minio.io/) server on Kubernetes. The deployment uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub.
@ -61,31 +45,10 @@ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/
### Create Persistent Volume Claim ### Create Persistent Volume Claim
Minio needs persistent storage to store objects. If there is no Minio needs persistent storage to store objects. If there is no persistent storage, the data stored in Minio instance will be stored in the container file system and will be wiped off as soon as the container restarts.
persistent storage, the data stored in Minio instance will be stored in the container file system and will be wiped off as soon as the container restarts.
Create a persistent volume claim (PVC) to request storage for the Minio instance. Kubernetes looks out for PVs matching the PVC request in the cluster and binds it to the PVC automatically. Create a persistent volume claim (PVC) to request storage for the Minio instance. Kubernetes looks out for PVs matching the PVC request in the cluster and binds it to the PVC automatically. Create the PersistentVolumeClaim
This is the PVC description.
```sh
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
# This name uniquely identifies the PVC. This is used in deployment.
name: minio-pv-claim
spec:
# Read more about access modes here: http://kubernetes.io/docs/user-guide/persistent-volumes/#access-modes
accessModes:
# The volume is mounted as read-write by a single node
- ReadWriteOnce
resources:
# This is the request for storage. Should be available in the cluster.
requests:
storage: 10Gi
```
Create the PersistentVolumeClaim
```sh ```sh
kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-pvc.yaml?raw=true kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-pvc.yaml?raw=true
@ -94,75 +57,7 @@ persistentvolumeclaim "minio-pv-claim" created
### Create Minio Deployment ### Create Minio Deployment
A deployment encapsulates replica sets and podsso, if a pod goes down, replication controller makes sure another pod comes up automatically. This way you wont need to bother about pod failures and will have a stable Minio service available. A deployment encapsulates replica sets and pods. If a pod goes down, replication controller makes sure another pod comes up automatically. This way you wont need to bother about pod failures and will have a stable Minio service available. Create the Deployment using the following command
This is the deployment description.
```sh
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
# This name uniquely identifies the Deployment
name: minio
spec:
strategy:
# Specifies the strategy used to replace old Pods by new ones
# Refer: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
type: Recreate
template:
metadata:
labels:
# This label is used as a selector in Service definition
app: minio
spec:
# Volumes used by this deployment
volumes:
- name: data
# This volume is based on PVC
persistentVolumeClaim:
# Name of the PVC created earlier
claimName: minio-pv-claim
containers:
- name: minio
# Volume mounts for this container
volumeMounts:
# Volume 'data' is mounted to path '/data'
- name: data
mountPath: "/data"
# Pulls the lastest Minio image from Docker Hub
image: minio/minio:RELEASE.2018-11-22T02-51-56Z
args:
- server
- /data
env:
# Minio access key and secret key
- name: MINIO_ACCESS_KEY
value: "minio"
- name: MINIO_SECRET_KEY
value: "minio123"
ports:
- containerPort: 9000
# Readiness probe detects situations when Minio server instance
# is not ready to accept traffic. Kubernetes doesn't forward
# traffic to the pod till readiness checks fail.
readinessProbe:
httpGet:
path: /minio/health/ready
port: 9000
initialDelaySeconds: 120
periodSeconds: 20
# Liveness probe detects situations where Minio server instance
# is not working properly and needs restart. Kubernetes automatically
# restarts the pods if liveness checks fail.
livenessProbe:
httpGet:
path: /minio/health/live
port: 9000
initialDelaySeconds: 120
periodSeconds: 20
```
Create the Deployment
```sh ```sh
kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-deployment.yaml?raw=true kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-deployment.yaml?raw=true
@ -173,25 +68,7 @@ deployment "minio-deployment" created
Now that you have a Minio deployment running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic. Now that you have a Minio deployment running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic.
In this example, we expose the Minio Deployment by creating a LoadBalancer service. This is the service description. In this example, we expose the Minio Deployment by creating a LoadBalancer service. Create the Minio service using the following command
```sh
apiVersion: v1
kind: Service
metadata:
# This name uniquely identifies the service
name: minio-service
spec:
type: LoadBalancer
ports:
- port: 9000
targetPort: 9000
protocol: TCP
selector:
# Looks for labels `app:minio` in the namespace and applies the spec
app: minio
```
Create the Minio service
```sh ```sh
kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-service.yaml?raw=true kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-standalone-service.yaml?raw=true
@ -230,6 +107,8 @@ kubectl delete deployment minio \
&& kubectl delete svc minio-service && kubectl delete svc minio-service
``` ```
<a name="minio-distributed-server-deployment"></a>
## Minio Distributed Server Deployment ## Minio Distributed Server Deployment
The following document describes the process to deploy [distributed Minio](https://docs.minio.io/docs/distributed-minio-quickstart-guide) server on Kubernetes. This example uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub. The following document describes the process to deploy [distributed Minio](https://docs.minio.io/docs/distributed-minio-quickstart-guide) server on Kubernetes. This example uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub.
@ -252,27 +131,7 @@ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/
### Create Minio Headless Service ### Create Minio Headless Service
Headless Service controls the domain within which StatefulSets are created. The domain managed by this Service takes the form: `$(service name).$(namespace).svc.cluster.local` (where “cluster.local” is the cluster domain), and the pods in this domain take the form: `$(pod-name-{i}).$(service name).$(namespace).svc.cluster.local`. This is required to get a DNS resolvable URL for each of the pods created within the Statefulset. Headless Service controls the domain within which StatefulSets are created. The domain managed by this Service takes the form: `$(service name).$(namespace).svc.cluster.local` (where “cluster.local” is the cluster domain), and the pods in this domain take the form: `$(pod-name-{i}).$(service name).$(namespace).svc.cluster.local`. This is required to get a DNS resolvable URL for each of the pods created within the Statefulset. Create the Headless Service using the following command
This is the Headless service description.
```sh
apiVersion: v1
kind: Service
metadata:
name: minio
labels:
app: minio
spec:
clusterIP: None
ports:
- port: 9000
name: minio
selector:
app: minio
```
Create the Headless Service
```sh ```sh
$ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-headless-service.yaml?raw=true $ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-headless-service.yaml?raw=true
@ -281,71 +140,7 @@ service "minio" created
### Create Minio Statefulset ### Create Minio Statefulset
A StatefulSet provides a deterministic name and a unique identity to each pod, making it easy to deploy stateful distributed applications. To launch distributed Minio you need to pass drive locations as parameters to the minio server command. Then, youll need to run the same command on all the participating pods. StatefulSets offer a perfect way to handle this requirement. A StatefulSet provides a deterministic name and a unique identity to each pod, making it easy to deploy stateful distributed applications. To launch distributed Minio you need to pass drive locations as parameters to the minio server command. Then, youll need to run the same command on all the participating pods. StatefulSets offer a perfect way to handle this requirement. Create the Statefulset using the following command
This is the Statefulset description.
```sh
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
# This name uniquely identifies the StatefulSet
name: minio
spec:
serviceName: minio
replicas: 4
selector:
matchLabels:
app: minio # has to match .spec.template.metadata.labels
template:
metadata:
labels:
app: minio # has to match .spec.selector.matchLabels
spec:
containers:
- name: minio
env:
- name: MINIO_ACCESS_KEY
value: "minio"
- name: MINIO_SECRET_KEY
value: "minio123"
image: minio/minio:RELEASE.2018-11-22T02-51-56Z
args:
- server
- http://minio-0.minio.default.svc.cluster.local/data
- http://minio-1.minio.default.svc.cluster.local/data
- http://minio-2.minio.default.svc.cluster.local/data
- http://minio-3.minio.default.svc.cluster.local/data
ports:
- containerPort: 9000
# These volume mounts are persistent. Each pod in the PetSet
# gets a volume mounted based on this field.
volumeMounts:
- name: data
mountPath: /data
# Liveness probe detects situations where Minio server instance
# is not working properly and needs restart. Kubernetes automatically
# restarts the pods if liveness checks fail.
livenessProbe:
httpGet:
path: /minio/health/live
port: 9000
initialDelaySeconds: 120
periodSeconds: 20
# These are converted to volume claims by the controller
# and mounted at the paths mentioned above.
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
```
Create the Statefulset
```sh ```sh
$ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-statefulset.yaml?raw=true $ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-statefulset.yaml?raw=true
@ -354,25 +149,7 @@ statefulset "minio" created
### Create Minio Service ### Create Minio Service
Now that you have a Minio statefulset running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic. Now that you have a Minio statefulset running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic. Create the Minio service using the following command
In this example, we expose the Minio Deployment by creating a LoadBalancer service. This is the service description.
```sh
apiVersion: v1
kind: Service
metadata:
name: minio-service
spec:
type: LoadBalancer
ports:
- port: 9000
targetPort: 9000
protocol: TCP
selector:
app: minio
```
Create the Minio service
```sh ```sh
$ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-service.yaml?raw=true $ kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-distributed-service.yaml?raw=true
@ -388,6 +165,7 @@ minio-service 10.55.248.23 104.199.249.165 9000:31852/TCP 1m
``` ```
### Update existing Minio StatefulSet ### Update existing Minio StatefulSet
You can update an existing Minio StatefulSet to use a newer Minio release. To do this, use the `kubectl patch statefulset` command: You can update an existing Minio StatefulSet to use a newer Minio release. To do this, use the `kubectl patch statefulset` command:
```sh ```sh
@ -444,6 +222,8 @@ kubectl label node hostname3 -l minio-server=true
kubectl label node hostname4 -l minio-server=true kubectl label node hostname4 -l minio-server=true
``` ```
<a name="minio-gcs-gateway-deployment"></a>
## Minio GCS Gateway Deployment ## Minio GCS Gateway Deployment
The following section describes the process to deploy [Minio](https://minio.io/) GCS Gateway on Kubernetes. The deployment uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub. The following section describes the process to deploy [Minio](https://minio.io/) GCS Gateway on Kubernetes. The deployment uses the [official Minio Docker image](https://hub.docker.com/r/minio/minio/~/dockerfile/) from Docker Hub.
@ -494,56 +274,7 @@ kubectl create secret generic gcs-credentials --from-file=/path/to/gcloud/creden
A deployment encapsulates replica sets and podsso, if a pod goes down, replication controller makes sure another pod comes up automatically. This way you wont need to bother about pod failures and will have a stable Minio service available. A deployment encapsulates replica sets and podsso, if a pod goes down, replication controller makes sure another pod comes up automatically. This way you wont need to bother about pod failures and will have a stable Minio service available.
Minio Gateway uses GCS as its storage backend and need to use a GCP `projectid` to identify your credentials. Update the section `gcp_project_id` with your Minio Gateway uses GCS as its storage backend and need to use a GCP `projectid` to identify your credentials. Update the section `gcp_project_id` with your
GCS project ID. This is the deployment description. GCS project ID. Create the Deployment using the following command
```sh
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
# This name uniquely identifies the Deployment
name: minio-deployment
spec:
strategy:
type: Recreate
template:
metadata:
labels:
# Label is used as selector in the service.
app: minio
spec:
# Refer to the secret created earlier
volumes:
- name: gcs-credentials
secret:
# Name of the Secret created earlier
secretName: gcs-credentials
containers:
- name: minio
# Pulls the default Minio image from Docker Hub
image: minio/minio:RELEASE.2018-11-22T02-51-56Z
args:
- gateway
- gcs
- gcp_project_id
env:
# Minio access key and secret key
- name: MINIO_ACCESS_KEY
value: "minio"
- name: MINIO_SECRET_KEY
value: "minio123"
# Google Cloud Service uses this variable
- name: GOOGLE_APPLICATION_CREDENTIALS
value: "/etc/credentials/application_default_credentials.json"
ports:
- containerPort: 9000
# Mount the volume into the pod
volumeMounts:
- name: gcs-credentials
mountPath: "/etc/credentials"
readOnly: true
```
Create the Deployment
```sh ```sh
kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-gcs-gateway-deployment.yaml?raw=true kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-gcs-gateway-deployment.yaml?raw=true
@ -552,25 +283,7 @@ deployment "minio-deployment" created
### Create Minio LoadBalancer Service ### Create Minio LoadBalancer Service
Now that you have a Minio deployment running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic. Now that you have a Minio deployment running, you may either want to access it internally (within the cluster) or expose it as a Service onto an external (outside of your cluster, maybe public internet) IP address, depending on your use case. You can achieve this using Services. There are 3 major service typesdefault type is ClusterIP, which exposes a service to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic. Create the Minio service using the following command
In this example, we expose the Minio Deployment by creating a LoadBalancer service. This is the service description.
```sh
apiVersion: v1
kind: Service
metadata:
name: minio-service
spec:
type: LoadBalancer
ports:
- port: 9000
targetPort: 9000
protocol: TCP
selector:
app: minio
```
Create the Minio service
```sh ```sh
kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-gcs-gateway-service.yaml?raw=true kubectl create -f https://github.com/minio/minio/blob/master/docs/orchestration/kubernetes/minio-gcs-gateway-service.yaml?raw=true
@ -608,7 +321,15 @@ kubectl delete deployment minio-deployment \
&& kubectl delete secret gcs-credentials && kubectl delete secret gcs-credentials
``` ```
### Explore Further <a name="monitoring-minio"></a>
## Monitoring Minio in Kubernetes
Minio server exposes un-authenticated readiness and liveness endpoints so Kubernetes can natively identify unhealthy Minio containers. Minio also exposes Prometheus compatible data on a different endpoint to enable Prometheus users to natively monitor their Minio deployments.
_Note_ : Readiness check is not allowed in distributed Minio deployment. This is because Kubernetes doesn't allow any traffic to containers whose Readiness checks fail, and in a distributed setup, Minio server can't respond to Readiness checks until all the nodes are reachable. So, Liveness checks are recommended native Kubernetes monitoring approach for distributed Minio StatefulSets. Read more about Kubernetes recommendations for [container probes](https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes).
## Explore Further
- [Minio Erasure Code QuickStart Guide](https://docs.minio.io/docs/minio-erasure-code-quickstart-guide) - [Minio Erasure Code QuickStart Guide](https://docs.minio.io/docs/minio-erasure-code-quickstart-guide)
- [Kubernetes Documentation](https://kubernetes.io/docs/home/) - [Kubernetes Documentation](https://kubernetes.io/docs/home/)
- [Helm package manager for kubernetes](https://helm.sh/) - [Helm package manager for kubernetes](https://helm.sh/)