Add PutObject Ring Buffer (#19605)

Replace the `io.Pipe` from streamingBitrotWriter -> CreateFile with a fixed size ring buffer.

This will add an output buffer for encoded shards to be written to disk - potentially via RPC.

This will remove blocking when `(*streamingBitrotWriter).Write` is called, and it writes hashes and data.

With current settings, the write looks like this:

```
Outbound
┌───────────────────┐             ┌────────────────┐               ┌───────────────┐                      ┌────────────────┐
│                   │   Parr.     │                │  (http body)  │               │                      │                │
│ Bitrot Hash       │     Write   │      Pipe      │      Read     │  HTTP buffer  │    Write (syscall)   │  TCP Buffer    │
│ Erasure Shard     │ ──────────► │  (unbuffered)  │ ────────────► │   (64K Max)   │ ───────────────────► │    (4MB)       │
│                   │             │                │               │  (io.Copy)    │                      │                │
└───────────────────┘             └────────────────┘               └───────────────┘                      └────────────────┘
```

We write a Hash (32 bytes). Since the pipe is unbuffered, it will block until the 32 bytes have 
been delivered to the TCP buffer, and the next Read hits the Pipe.

Then we write the shard data. This will typically be bigger than 64KB, so it will block until two blocks 
have been read from the pipe.

When we insert a ring buffer:

```
Outbound
┌───────────────────┐             ┌────────────────┐               ┌───────────────┐                      ┌────────────────┐
│                   │             │                │  (http body)  │               │                      │                │
│ Bitrot Hash       │     Write   │  Ring Buffer   │      Read     │  HTTP buffer  │    Write (syscall)   │  TCP Buffer    │
│ Erasure Shard     │ ──────────► │    (2MB)       │ ────────────► │   (64K Max)   │ ───────────────────► │    (4MB)       │
│                   │             │                │               │  (io.Copy)    │                      │                │
└───────────────────┘             └────────────────┘               └───────────────┘                      └────────────────┘
```

The hash+shard will fit within the ring buffer, so writes will not block - but will complete after a 
memcopy. Reads can fill the 64KB buffer if there is data for it.

If the network is congested, the ring buffer will become filled, and all syscalls will be on full buffers.
Only when the ring buffer is filled will erasure coding start blocking.

Since there is always "space" to write output data, we remove the parallel writing since we are 
always writing to memory now, and the goroutine synchronization overhead probably not worth taking. 

If the output were blocked in the existing, we would still wait for it to unblock in parallel write, so it would 
make no difference there - except now the ring buffer smoothes out the load.

There are some micro-optimizations we could look at later. The biggest is that, in most cases, 
we could encode directly to the ring buffer - if we are not at a boundary. Also, "force filling" the 
Read requests (i.e., blocking until a full read can be completed) could be investigated and maybe 
allow concurrent memory on read and write.
This commit is contained in:
Klaus Post 2024-05-14 17:11:04 -07:00 committed by GitHub
parent de4d3dac00
commit d4b391de1b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 1902 additions and 36 deletions

View File

@ -26,15 +26,17 @@ import (
xhttp "github.com/minio/minio/internal/http"
"github.com/minio/minio/internal/ioutil"
"github.com/minio/minio/internal/ringbuffer"
)
// Calculates bitrot in chunks and writes the hash into the stream.
type streamingBitrotWriter struct {
iow io.WriteCloser
closeWithErr func(err error) error
closeWithErr func(err error)
h hash.Hash
shardSize int64
canClose *sync.WaitGroup
byteBuf []byte
}
func (b *streamingBitrotWriter) Write(p []byte) (int, error) {
@ -62,7 +64,10 @@ func (b *streamingBitrotWriter) Write(p []byte) (int, error) {
}
func (b *streamingBitrotWriter) Close() error {
// Close the underlying writer.
// This will also flush the ring buffer if used.
err := b.iow.Close()
// Wait for all data to be written before returning else it causes race conditions.
// Race condition is because of io.PipeWriter implementation. i.e consider the following
// sequent of operations:
@ -73,29 +78,34 @@ func (b *streamingBitrotWriter) Close() error {
if b.canClose != nil {
b.canClose.Wait()
}
// Recycle the buffer.
if b.byteBuf != nil {
globalBytePoolCap.Load().Put(b.byteBuf)
b.byteBuf = nil
}
return err
}
// newStreamingBitrotWriterBuffer returns streaming bitrot writer implementation.
// The output is written to the supplied writer w.
func newStreamingBitrotWriterBuffer(w io.Writer, algo BitrotAlgorithm, shardSize int64) io.Writer {
return &streamingBitrotWriter{iow: ioutil.NopCloser(w), h: algo.New(), shardSize: shardSize, canClose: nil, closeWithErr: func(err error) error {
// Similar to CloseWithError on pipes we always return nil.
return nil
}}
return &streamingBitrotWriter{iow: ioutil.NopCloser(w), h: algo.New(), shardSize: shardSize, canClose: nil, closeWithErr: func(err error) {}}
}
// Returns streaming bitrot writer implementation.
func newStreamingBitrotWriter(disk StorageAPI, origvolume, volume, filePath string, length int64, algo BitrotAlgorithm, shardSize int64) io.Writer {
r, w := io.Pipe()
h := algo.New()
buf := globalBytePoolCap.Load().Get()
rb := ringbuffer.NewBuffer(buf[:cap(buf)]).SetBlocking(true)
bw := &streamingBitrotWriter{
iow: ioutil.NewDeadlineWriter(w, globalDriveConfig.GetMaxTimeout()),
closeWithErr: w.CloseWithError,
iow: ioutil.NewDeadlineWriter(rb.WriteCloser(), globalDriveConfig.GetMaxTimeout()),
closeWithErr: rb.CloseWithError,
h: h,
shardSize: shardSize,
canClose: &sync.WaitGroup{},
byteBuf: buf,
}
bw.canClose.Add(1)
go func() {
@ -106,7 +116,7 @@ func newStreamingBitrotWriter(disk StorageAPI, origvolume, volume, filePath stri
bitrotSumsTotalSize := ceilFrac(length, shardSize) * int64(h.Size()) // Size used for storing bitrot checksums.
totalFileSize = bitrotSumsTotalSize + length
}
r.CloseWithError(disk.CreateFile(context.TODO(), origvolume, volume, filePath, totalFileSize, r))
rb.CloseWithError(disk.CreateFile(context.TODO(), origvolume, volume, filePath, totalFileSize, rb))
}()
return bw
}

View File

@ -346,7 +346,7 @@ func (e Erasure) Heal(ctx context.Context, writers []io.Writer, readers []io.Rea
return err
}
w := parallelWriter{
w := multiWriter{
writers: writers,
writeQuorum: 1,
errs: make([]error, len(writers)),

View File

@ -21,44 +21,36 @@ import (
"context"
"fmt"
"io"
"sync"
)
// Writes in parallel to writers
type parallelWriter struct {
// Writes to multiple writers
type multiWriter struct {
writers []io.Writer
writeQuorum int
errs []error
}
// Write writes data to writers in parallel.
func (p *parallelWriter) Write(ctx context.Context, blocks [][]byte) error {
var wg sync.WaitGroup
// Write writes data to writers.
func (p *multiWriter) Write(ctx context.Context, blocks [][]byte) error {
for i := range p.writers {
if p.errs[i] != nil {
continue
}
if p.writers[i] == nil {
p.errs[i] = errDiskNotFound
continue
}
if p.errs[i] != nil {
continue
}
wg.Add(1)
go func(i int) {
defer wg.Done()
var n int
n, p.errs[i] = p.writers[i].Write(blocks[i])
if p.errs[i] == nil {
if n != len(blocks[i]) {
p.errs[i] = io.ErrShortWrite
p.writers[i] = nil
}
} else {
var n int
n, p.errs[i] = p.writers[i].Write(blocks[i])
if p.errs[i] == nil {
if n != len(blocks[i]) {
p.errs[i] = io.ErrShortWrite
p.writers[i] = nil
}
}(i)
} else {
p.writers[i] = nil
}
}
wg.Wait()
// If nilCount >= p.writeQuorum, we return nil. This is because HealFile() uses
// CreateFile with p.writeQuorum=1 to accommodate healing of single disk.
@ -75,7 +67,7 @@ func (p *parallelWriter) Write(ctx context.Context, blocks [][]byte) error {
// Encode reads from the reader, erasure-encodes the data and writes to the writers.
func (e *Erasure) Encode(ctx context.Context, src io.Reader, writers []io.Writer, buf []byte, quorum int) (total int64, err error) {
writer := &parallelWriter{
writer := &multiWriter{
writers: writers,
writeQuorum: quorum,
errs: make([]error, len(writers)),

View File

@ -31,6 +31,11 @@ import (
// tlsClientSessionCacheSize is the cache size for client sessions.
var tlsClientSessionCacheSize = 100
const (
WriteBufferSize = 64 << 10 // WriteBufferSize 64KiB moving up from 4KiB default
ReadBufferSize = 64 << 10 // ReadBufferSize 64KiB moving up from 4KiB default
)
// ConnSettings - contains connection settings.
type ConnSettings struct {
DialContext DialContext // Custom dialContext, DialTimeout is ignored if this is already setup.
@ -72,8 +77,8 @@ func (s ConnSettings) getDefaultTransport(maxIdleConnsPerHost int) *http.Transpo
Proxy: http.ProxyFromEnvironment,
DialContext: dialContext,
MaxIdleConnsPerHost: maxIdleConnsPerHost,
WriteBufferSize: 64 << 10, // 64KiB moving up from 4KiB default
ReadBufferSize: 64 << 10, // 64KiB moving up from 4KiB default
WriteBufferSize: WriteBufferSize,
ReadBufferSize: ReadBufferSize,
IdleConnTimeout: 15 * time.Second,
ResponseHeaderTimeout: 15 * time.Minute, // Conservative timeout is the default (for MinIO internode)
TLSHandshakeTimeout: 10 * time.Second,

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2019 smallnest
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,60 @@
# ringbuffer
[![License](https://img.shields.io/:license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![GoDoc](https://godoc.org/github.com/smallnest/ringbuffer?status.png)](http://godoc.org/github.com/smallnest/ringbuffer) [![Go Report Card](https://goreportcard.com/badge/github.com/smallnest/ringbuffer)](https://goreportcard.com/report/github.com/smallnest/ringbuffer) [![coveralls](https://coveralls.io/repos/smallnest/ringbuffer/badge.svg?branch=master&service=github)](https://coveralls.io/github/smallnest/ringbuffer?branch=master)
A circular buffer (ring buffer) in Go, implemented io.ReaderWriter interface
[![wikipedia](Circular_Buffer_Animation.gif)](https://github.com/smallnest/ringbuffer)
# Usage
```go
package main
import (
"fmt"
"github.com/smallnest/ringbuffer"
)
func main() {
rb := ringbuffer.New(1024)
// write
rb.Write([]byte("abcd"))
fmt.Println(rb.Length())
fmt.Println(rb.Free())
// read
buf := make([]byte, 4)
rb.Read(buf)
fmt.Println(string(buf))
}
```
It is possible to use an existing buffer with by replacing `New` with `NewBuffer`.
# Blocking vs Non-blocking
The default behavior of the ring buffer is non-blocking,
meaning that reads and writes will return immediately with an error if the operation cannot be completed.
If you want to block when reading or writing, you must enable it:
```go
rb := ringbuffer.New(1024).SetBlocking(true)
```
Enabling blocking will cause the ring buffer to behave like a buffered [io.Pipe](https://pkg.go.dev/io#Pipe).
Regular Reads will block until data is available, but not wait for a full buffer.
Writes will block until there is space available and writes bigger than the buffer will wait for reads to make space.
`TryRead` and `TryWrite` are still available for non-blocking reads and writes.
To signify the end of the stream, close the ring buffer from the writer side with `rb.CloseWriter()`
Either side can use `rb.CloseWithError(err error)` to signal an error and close the ring buffer.
Any reads or writes will return the error on next call.
In blocking mode errors are stateful and the same error will be returned until `rb.Reset()` is called.

View File

@ -0,0 +1,618 @@
// Copyright 2019 smallnest. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package ringbuffer
import (
"context"
"errors"
"io"
"sync"
"unsafe"
)
var (
// ErrTooMuchDataToWrite is returned when the data to write is more than the buffer size.
ErrTooMuchDataToWrite = errors.New("too much data to write")
// ErrIsFull is returned when the buffer is full and not blocking.
ErrIsFull = errors.New("ringbuffer is full")
// ErrIsEmpty is returned when the buffer is empty and not blocking.
ErrIsEmpty = errors.New("ringbuffer is empty")
// ErrIsNotEmpty is returned when the buffer is not empty and not blocking.
ErrIsNotEmpty = errors.New("ringbuffer is not empty")
// ErrAcquireLock is returned when the lock is not acquired on Try operations.
ErrAcquireLock = errors.New("unable to acquire lock")
// ErrWriteOnClosed is returned when write on a closed ringbuffer.
ErrWriteOnClosed = errors.New("write on closed ringbuffer")
)
// RingBuffer is a circular buffer that implement io.ReaderWriter interface.
// It operates like a buffered pipe, where data written to a RingBuffer
// and can be read back from another goroutine.
// It is safe to concurrently read and write RingBuffer.
type RingBuffer struct {
buf []byte
size int
r int // next position to read
w int // next position to write
isFull bool
err error
block bool
mu sync.Mutex
wg sync.WaitGroup
readCond *sync.Cond // Signaled when data has been read.
writeCond *sync.Cond // Signaled when data has been written.
}
// New returns a new RingBuffer whose buffer has the given size.
func New(size int) *RingBuffer {
return &RingBuffer{
buf: make([]byte, size),
size: size,
}
}
// NewBuffer returns a new RingBuffer whose buffer is provided.
func NewBuffer(b []byte) *RingBuffer {
return &RingBuffer{
buf: b,
size: len(b),
}
}
// SetBlocking sets the blocking mode of the ring buffer.
// If block is true, Read and Write will block when there is no data to read or no space to write.
// If block is false, Read and Write will return ErrIsEmpty or ErrIsFull immediately.
// By default, the ring buffer is not blocking.
// This setting should be called before any Read or Write operation or after a Reset.
func (r *RingBuffer) SetBlocking(block bool) *RingBuffer {
r.block = block
if block {
r.readCond = sync.NewCond(&r.mu)
r.writeCond = sync.NewCond(&r.mu)
}
return r
}
// WithCancel sets a context to cancel the ring buffer.
// When the context is canceled, the ring buffer will be closed with the context error.
// A goroutine will be started and run until the provided context is canceled.
func (r *RingBuffer) WithCancel(ctx context.Context) *RingBuffer {
go func() {
select {
case <-ctx.Done():
r.CloseWithError(ctx.Err())
}
}()
return r
}
func (r *RingBuffer) setErr(err error, locked bool) error {
if !locked {
r.mu.Lock()
defer r.mu.Unlock()
}
if r.err != nil && r.err != io.EOF {
return r.err
}
switch err {
// Internal errors are transient
case nil, ErrIsEmpty, ErrIsFull, ErrAcquireLock, ErrTooMuchDataToWrite, ErrIsNotEmpty:
return err
default:
r.err = err
if r.block {
r.readCond.Broadcast()
r.writeCond.Broadcast()
}
}
return err
}
func (r *RingBuffer) readErr(locked bool) error {
if !locked {
r.mu.Lock()
defer r.mu.Unlock()
}
if r.err != nil {
if r.err == io.EOF {
if r.w == r.r && !r.isFull {
return io.EOF
}
return nil
}
return r.err
}
return nil
}
// Read reads up to len(p) bytes into p. It returns the number of bytes read (0 <= n <= len(p)) and any error encountered.
// Even if Read returns n < len(p), it may use all of p as scratch space during the call.
// If some data is available but not len(p) bytes, Read conventionally returns what is available instead of waiting for more.
// When Read encounters an error or end-of-file condition after successfully reading n > 0 bytes, it returns the number of bytes read.
// It may return the (non-nil) error from the same call or return the error (and n == 0) from a subsequent call.
// Callers should always process the n > 0 bytes returned before considering the error err.
// Doing so correctly handles I/O errors that happen after reading some bytes and also both of the allowed EOF behaviors.
func (r *RingBuffer) Read(p []byte) (n int, err error) {
if len(p) == 0 {
return 0, r.readErr(false)
}
r.mu.Lock()
defer r.mu.Unlock()
if err := r.readErr(true); err != nil {
return 0, err
}
r.wg.Add(1)
defer r.wg.Done()
n, err = r.read(p)
for err == ErrIsEmpty && r.block {
r.writeCond.Wait()
if err = r.readErr(true); err != nil {
break
}
n, err = r.read(p)
}
if r.block && n > 0 {
r.readCond.Broadcast()
}
return n, err
}
// TryRead read up to len(p) bytes into p like Read but it is not blocking.
// If it has not succeeded to acquire the lock, it return 0 as n and ErrAcquireLock.
func (r *RingBuffer) TryRead(p []byte) (n int, err error) {
ok := r.mu.TryLock()
if !ok {
return 0, ErrAcquireLock
}
defer r.mu.Unlock()
if err := r.readErr(true); err != nil {
return 0, err
}
if len(p) == 0 {
return 0, r.readErr(true)
}
n, err = r.read(p)
if r.block && n > 0 {
r.readCond.Broadcast()
}
return n, err
}
func (r *RingBuffer) read(p []byte) (n int, err error) {
if r.w == r.r && !r.isFull {
return 0, ErrIsEmpty
}
if r.w > r.r {
n = r.w - r.r
if n > len(p) {
n = len(p)
}
copy(p, r.buf[r.r:r.r+n])
r.r = (r.r + n) % r.size
return
}
n = r.size - r.r + r.w
if n > len(p) {
n = len(p)
}
if r.r+n <= r.size {
copy(p, r.buf[r.r:r.r+n])
} else {
c1 := r.size - r.r
copy(p, r.buf[r.r:r.size])
c2 := n - c1
copy(p[c1:], r.buf[0:c2])
}
r.r = (r.r + n) % r.size
r.isFull = false
return n, r.readErr(true)
}
// ReadByte reads and returns the next byte from the input or ErrIsEmpty.
func (r *RingBuffer) ReadByte() (b byte, err error) {
r.mu.Lock()
defer r.mu.Unlock()
if err = r.readErr(true); err != nil {
return 0, err
}
for r.w == r.r && !r.isFull {
if r.block {
r.writeCond.Wait()
err = r.readErr(true)
if err != nil {
return 0, err
}
continue
}
return 0, ErrIsEmpty
}
b = r.buf[r.r]
r.r++
if r.r == r.size {
r.r = 0
}
r.isFull = false
return b, r.readErr(true)
}
// Write writes len(p) bytes from p to the underlying buf.
// It returns the number of bytes written from p (0 <= n <= len(p))
// and any error encountered that caused the write to stop early.
// If blocking n < len(p) will be returned only if an error occurred.
// Write returns a non-nil error if it returns n < len(p).
// Write will not modify the slice data, even temporarily.
func (r *RingBuffer) Write(p []byte) (n int, err error) {
if len(p) == 0 {
return 0, r.setErr(nil, false)
}
r.mu.Lock()
defer r.mu.Unlock()
if err := r.err; err != nil {
if err == io.EOF {
err = ErrWriteOnClosed
}
return 0, err
}
wrote := 0
for len(p) > 0 {
n, err = r.write(p)
wrote += n
if !r.block || err == nil {
break
}
err = r.setErr(err, true)
if r.block && (err == ErrIsFull || err == ErrTooMuchDataToWrite) {
r.writeCond.Broadcast()
r.readCond.Wait()
p = p[n:]
err = nil
continue
}
break
}
if r.block && wrote > 0 {
r.writeCond.Broadcast()
}
return wrote, r.setErr(err, true)
}
// TryWrite writes len(p) bytes from p to the underlying buf like Write, but it is not blocking.
// If it has not succeeded to acquire the lock, it return 0 as n and ErrAcquireLock.
func (r *RingBuffer) TryWrite(p []byte) (n int, err error) {
if len(p) == 0 {
return 0, r.setErr(nil, false)
}
ok := r.mu.TryLock()
if !ok {
return 0, ErrAcquireLock
}
defer r.mu.Unlock()
if err := r.err; err != nil {
if err == io.EOF {
err = ErrWriteOnClosed
}
return 0, err
}
n, err = r.write(p)
if r.block && n > 0 {
r.writeCond.Broadcast()
}
return n, r.setErr(err, true)
}
func (r *RingBuffer) write(p []byte) (n int, err error) {
if r.isFull {
return 0, ErrIsFull
}
var avail int
if r.w >= r.r {
avail = r.size - r.w + r.r
} else {
avail = r.r - r.w
}
if len(p) > avail {
err = ErrTooMuchDataToWrite
p = p[:avail]
}
n = len(p)
if r.w >= r.r {
c1 := r.size - r.w
if c1 >= n {
copy(r.buf[r.w:], p)
r.w += n
} else {
copy(r.buf[r.w:], p[:c1])
c2 := n - c1
copy(r.buf[0:], p[c1:])
r.w = c2
}
} else {
copy(r.buf[r.w:], p)
r.w += n
}
if r.w == r.size {
r.w = 0
}
if r.w == r.r {
r.isFull = true
}
return n, err
}
// WriteByte writes one byte into buffer, and returns ErrIsFull if buffer is full.
func (r *RingBuffer) WriteByte(c byte) error {
r.mu.Lock()
defer r.mu.Unlock()
if err := r.err; err != nil {
if err == io.EOF {
err = ErrWriteOnClosed
}
return err
}
err := r.writeByte(c)
for err == ErrIsFull && r.block {
r.readCond.Wait()
err = r.setErr(r.writeByte(c), true)
}
if r.block && err == nil {
r.writeCond.Broadcast()
}
return err
}
// TryWriteByte writes one byte into buffer without blocking.
// If it has not succeeded to acquire the lock, it return ErrAcquireLock.
func (r *RingBuffer) TryWriteByte(c byte) error {
ok := r.mu.TryLock()
if !ok {
return ErrAcquireLock
}
defer r.mu.Unlock()
if err := r.err; err != nil {
if err == io.EOF {
err = ErrWriteOnClosed
}
return err
}
err := r.writeByte(c)
if err == nil && r.block {
r.writeCond.Broadcast()
}
return err
}
func (r *RingBuffer) writeByte(c byte) error {
if r.w == r.r && r.isFull {
return ErrIsFull
}
r.buf[r.w] = c
r.w++
if r.w == r.size {
r.w = 0
}
if r.w == r.r {
r.isFull = true
}
return nil
}
// Length return the length of available read bytes.
func (r *RingBuffer) Length() int {
r.mu.Lock()
defer r.mu.Unlock()
if r.w == r.r {
if r.isFull {
return r.size
}
return 0
}
if r.w > r.r {
return r.w - r.r
}
return r.size - r.r + r.w
}
// Capacity returns the size of the underlying buffer.
func (r *RingBuffer) Capacity() int {
return r.size
}
// Free returns the length of available bytes to write.
func (r *RingBuffer) Free() int {
r.mu.Lock()
defer r.mu.Unlock()
if r.w == r.r {
if r.isFull {
return 0
}
return r.size
}
if r.w < r.r {
return r.r - r.w
}
return r.size - r.w + r.r
}
// WriteString writes the contents of the string s to buffer, which accepts a slice of bytes.
func (r *RingBuffer) WriteString(s string) (n int, err error) {
x := (*[2]uintptr)(unsafe.Pointer(&s))
h := [3]uintptr{x[0], x[1], x[1]}
buf := *(*[]byte)(unsafe.Pointer(&h))
return r.Write(buf)
}
// Bytes returns all available read bytes.
// It does not move the read pointer and only copy the available data.
// If the dst is big enough it will be used as destination,
// otherwise a new buffer will be allocated.
func (r *RingBuffer) Bytes(dst []byte) []byte {
r.mu.Lock()
defer r.mu.Unlock()
getDst := func(n int) []byte {
if cap(dst) < n {
return make([]byte, n)
}
return dst[:n]
}
if r.w == r.r {
if r.isFull {
buf := getDst(r.size)
copy(buf, r.buf[r.r:])
copy(buf[r.size-r.r:], r.buf[:r.w])
return buf
}
return nil
}
if r.w > r.r {
buf := getDst(r.w - r.r)
copy(buf, r.buf[r.r:r.w])
return buf
}
n := r.size - r.r + r.w
buf := getDst(n)
if r.r+n < r.size {
copy(buf, r.buf[r.r:r.r+n])
} else {
c1 := r.size - r.r
copy(buf, r.buf[r.r:r.size])
c2 := n - c1
copy(buf[c1:], r.buf[0:c2])
}
return buf
}
// IsFull returns this ringbuffer is full.
func (r *RingBuffer) IsFull() bool {
r.mu.Lock()
defer r.mu.Unlock()
return r.isFull
}
// IsEmpty returns this ringbuffer is empty.
func (r *RingBuffer) IsEmpty() bool {
r.mu.Lock()
defer r.mu.Unlock()
return !r.isFull && r.w == r.r
}
// CloseWithError closes the writer; reads will return
// no bytes and the error err, or EOF if err is nil.
//
// CloseWithError never overwrites the previous error if it exists
// and always returns nil.
func (r *RingBuffer) CloseWithError(err error) {
if err == nil {
err = io.EOF
}
r.setErr(err, false)
}
// CloseWriter closes the writer.
// Reads will return any remaining bytes and io.EOF.
func (r *RingBuffer) CloseWriter() {
r.setErr(io.EOF, false)
}
// Flush waits for the buffer to be empty and fully read.
// If not blocking ErrIsNotEmpty will be returned if the buffer still contains data.
func (r *RingBuffer) Flush() error {
r.mu.Lock()
defer r.mu.Unlock()
for r.w != r.r || r.isFull {
err := r.readErr(true)
if err != nil {
if err == io.EOF {
err = nil
}
return err
}
if !r.block {
return ErrIsNotEmpty
}
r.readCond.Wait()
}
err := r.readErr(true)
if err == io.EOF {
return nil
}
return err
}
// Reset the read pointer and writer pointer to zero.
func (r *RingBuffer) Reset() {
r.mu.Lock()
defer r.mu.Unlock()
// Set error so any readers/writers will return immediately.
r.setErr(errors.New("reset called"), true)
if r.block {
r.readCond.Broadcast()
r.writeCond.Broadcast()
}
// Unlock the mutex so readers/writers can finish.
r.mu.Unlock()
r.wg.Wait()
r.mu.Lock()
r.r = 0
r.w = 0
r.err = nil
r.isFull = false
}
// WriteCloser returns a WriteCloser that writes to the ring buffer.
// When the returned WriteCloser is closed, it will wait for all data to be read before returning.
func (r *RingBuffer) WriteCloser() io.WriteCloser {
return &writeCloser{RingBuffer: r}
}
type writeCloser struct {
*RingBuffer
}
// Close provides a close method for the WriteCloser.
func (wc *writeCloser) Close() error {
wc.CloseWriter()
return wc.Flush()
}

View File

@ -0,0 +1,111 @@
package ringbuffer
import (
"io"
"strings"
"testing"
)
func BenchmarkRingBuffer_Sync(b *testing.B) {
rb := New(1024)
data := []byte(strings.Repeat("a", 512))
buf := make([]byte, 512)
b.ResetTimer()
for i := 0; i < b.N; i++ {
rb.Write(data)
rb.Read(buf)
}
}
func BenchmarkRingBuffer_AsyncRead(b *testing.B) {
// Pretty useless benchmark, but it's here for completeness.
rb := New(1024)
data := []byte(strings.Repeat("a", 512))
buf := make([]byte, 512)
go func() {
for {
rb.Read(buf)
}
}()
b.ResetTimer()
for i := 0; i < b.N; i++ {
rb.Write(data)
}
}
func BenchmarkRingBuffer_AsyncReadBlocking(b *testing.B) {
const sz = 512
const buffers = 10
rb := New(sz * buffers)
rb.SetBlocking(true)
data := []byte(strings.Repeat("a", sz))
buf := make([]byte, sz)
go func() {
for {
rb.Read(buf)
}
}()
b.ResetTimer()
for i := 0; i < b.N; i++ {
rb.Write(data)
}
}
func BenchmarkRingBuffer_AsyncWrite(b *testing.B) {
rb := New(1024)
data := []byte(strings.Repeat("a", 512))
buf := make([]byte, 512)
go func() {
for {
rb.Write(data)
}
}()
b.ResetTimer()
for i := 0; i < b.N; i++ {
rb.Read(buf)
}
}
func BenchmarkRingBuffer_AsyncWriteBlocking(b *testing.B) {
const sz = 512
const buffers = 10
rb := New(sz * buffers)
rb.SetBlocking(true)
data := []byte(strings.Repeat("a", sz))
buf := make([]byte, sz)
go func() {
for {
rb.Write(data)
}
}()
b.ResetTimer()
for i := 0; i < b.N; i++ {
rb.Read(buf)
}
}
func BenchmarkIoPipeReader(b *testing.B) {
pr, pw := io.Pipe()
data := []byte(strings.Repeat("a", 512))
buf := make([]byte, 512)
go func() {
for {
pw.Write(data)
}
}()
b.ResetTimer()
for i := 0; i < b.N; i++ {
pr.Read(buf)
}
}

File diff suppressed because it is too large Load Diff