Merge pull request #1959 from krishnasrinivas/parallel-reads

Parallel reads in erasure-read
This commit is contained in:
Harshavardhana 2016-06-22 15:05:35 -07:00 committed by GitHub
commit 75dddfb2ae
4 changed files with 254 additions and 127 deletions

View File

@ -17,10 +17,10 @@
package main
import (
"bytes"
"encoding/hex"
"errors"
"io"
"sync"
"github.com/klauspost/reedsolomon"
)
@ -30,114 +30,191 @@ import (
// are decoded into a data block. Data block is trimmed for given offset and length,
// then written to given writer. This function also supports bit-rot detection by
// verifying checksum of individual block's checksum.
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64) (int64, error) {
// Total bytes written to writer
bytesWritten := int64(0)
// Gather previously calculated block checksums.
blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName)
func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) {
// Pick one erasure info.
eInfo := pickValidErasureInfo(eInfos)
// Get block info for given offset, length and block size.
startBlock, bytesToSkip, endBlock := getBlockInfo(offset, length, eInfo.BlockSize)
// Gather previously calculated block checksums.
blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName)
orderedBlockCheckSums := make([]checkSumInfo, len(disks))
// Data chunk size on each block.
chunkSize := eInfo.BlockSize / int64(eInfo.DataBlocks)
// []orderedDisks will have first eInfo.DataBlocks disks as data disks and rest will be parity.
orderedDisks := make([]StorageAPI, len(disks))
for index := range disks {
blockIndex := eInfo.Distribution[index]
orderedDisks[blockIndex-1] = disks[index]
orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index]
}
for block := startBlock; block <= endBlock; block++ {
// Allocate encoded blocks up to storage disks.
// bitrotVerify verifies if the file on a particular disk does not have bitrot by verifying the hash of
// the contents of the file.
bitrotVerify := func() func(diskIndex int) bool {
verified := make([]bool, len(orderedDisks))
// Return closure so that we have reference to []verified and not recalculate the hash on it
// everytime the function is called for the same disk.
return func(diskIndex int) bool {
if verified[diskIndex] {
return true
}
isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex])
verified[diskIndex] = isValid
return isValid
}
}()
// Total bytes written to writer
bytesWritten := int64(0)
// chunkSize is roughly BlockSize/DataBlocks.
// chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes.
// So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by
// DataBlocks. The extra space will have 0-padding.
chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks)
startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize)
// For each block, read chunk from each disk. If we are able to read all the data disks then we don't
// need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number
// of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer.
for block := startBlock; bytesWritten < length; block++ {
// curChunkSize will be chunkSize except for the last block because the size of the last block
// can be less than BlockSize.
curChunkSize := chunkSize
if block == endBlock && (totalLength%eInfo.BlockSize != 0) {
// If this is the last block and size of the block is < BlockSize.
curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks)
}
// Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk.
enBlocks := make([][]byte, len(disks))
// Counter to keep success data blocks.
var successDataBlocksCount = 0
var noReconstruct bool // Set for no reconstruction.
// Keep how many bytes are read for this block.
// In most cases, last block in the file is shorter than chunkSize
lastReadSize := int64(0)
// Read from all the disks.
for index, disk := range disks {
blockIndex := eInfo.Distribution[index] - 1
if !isValidBlock(disks, volume, path, toDiskIndex(blockIndex, eInfo.Distribution), blockCheckSums) {
continue
}
// Figure out the number of disks that are needed for the read.
// We will need DataBlocks number of disks if all the data disks are up.
// We will need DataBlocks+1 number of disks even if one of the data disks is down.
diskCount := 0
// Count the number of data disks that are up.
for _, disk := range orderedDisks[:eInfo.DataBlocks] {
if disk == nil {
continue
}
diskCount++
}
// Initialize chunk slice and fill the data from each parts.
enBlocks[blockIndex] = make([]byte, chunkSize)
if diskCount < eInfo.DataBlocks {
// Not enough data disks up, so we need DataBlocks+1 number of disks for reed-solomon Reconstruct()
diskCount = eInfo.DataBlocks + 1
}
// Read the necessary blocks.
n, err := disk.ReadFile(volume, path, block*chunkSize, enBlocks[blockIndex])
wg := &sync.WaitGroup{}
// current disk index from which to read, this will be used later in case one of the parallel reads fails.
index := 0
// Read from the disks in parallel.
for _, disk := range orderedDisks {
if disk == nil {
index++
continue
}
wg.Add(1)
go func(index int, disk StorageAPI) {
defer wg.Done()
ok := bitrotVerify(index)
if !ok {
// So that we don't read from this disk for the next block.
orderedDisks[index] = nil
return
}
buf := make([]byte, curChunkSize)
// Note that for the offset calculation we have to use chunkSize and not
// curChunkSize. If we use curChunkSize for offset calculation then it
// can result in wrong offset for the last block.
n, err := disk.ReadFile(volume, path, block*chunkSize, buf)
if err != nil {
enBlocks[blockIndex] = nil
} else if n < chunkSize {
// As the data we got is smaller than chunk size, keep only required chunk slice
enBlocks[blockIndex] = append([]byte{}, enBlocks[blockIndex][:n]...)
// So that we don't read from this disk for the next block.
orderedDisks[index] = nil
return
}
// Remember bytes read at first time.
if lastReadSize == 0 {
lastReadSize = n
}
// If bytes read is not equal to bytes read lastly, treat it as corrupted chunk.
if n != lastReadSize {
return bytesWritten, errXLDataCorrupt
}
// Verify if we have successfully read all the data blocks.
if blockIndex < eInfo.DataBlocks && enBlocks[blockIndex] != nil {
successDataBlocksCount++
// Set when we have all the data blocks and no
// reconstruction is needed, so that we can avoid
// erasure reconstruction.
noReconstruct = successDataBlocksCount == eInfo.DataBlocks
if noReconstruct {
// Break out we have read all the data blocks.
enBlocks[index] = buf[:n]
}(index, disk)
index++
diskCount--
if diskCount == 0 {
break
}
}
wg.Wait()
// Count number of data and parity blocks that were read.
var successDataBlocksCount = 0
var successParityBlocksCount = 0
for bufidx, buf := range enBlocks {
if buf == nil {
continue
}
if bufidx < eInfo.DataBlocks {
successDataBlocksCount++
continue
}
successParityBlocksCount++
}
// Verify if reconstruction is needed, proceed with reconstruction.
if !noReconstruct {
if successDataBlocksCount < eInfo.DataBlocks {
// If we don't have DataBlocks number of data blocks we will have to read enough
// parity blocks such that we have DataBlocks+1 number for blocks for reedsolomon.Reconstruct()
for ; index < len(orderedDisks); index++ {
if (successDataBlocksCount + successParityBlocksCount) == (eInfo.DataBlocks + 1) {
// We have DataBlocks+1 blocks, enough for reedsolomon.Reconstruct()
break
}
ok := bitrotVerify(index)
if !ok {
// Mark nil so that we don't read from this disk for the next block.
orderedDisks[index] = nil
continue
}
buf := make([]byte, curChunkSize)
n, err := orderedDisks[index].ReadFile(volume, path, block*chunkSize, buf)
if err != nil {
// Mark nil so that we don't read from this disk for the next block.
orderedDisks[index] = nil
continue
}
successParityBlocksCount++
enBlocks[index] = buf[:n]
}
// Reconstruct the missing data blocks.
err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks)
if err != nil {
return bytesWritten, err
}
}
// Get data blocks from encoded blocks.
dataBlocks, err := getDataBlocks(enBlocks, eInfo.DataBlocks, int(lastReadSize)*eInfo.DataBlocks)
if err != nil {
return bytesWritten, err
var outSize, outOffset int64
// enBlocks data can have 0-padding hence we need to figure the exact number
// of bytes we want to read from enBlocks.
blockSize := eInfo.BlockSize
if block == endBlock && totalLength%eInfo.BlockSize != 0 {
// For the last block, the block size can be less than BlockSize.
blockSize = totalLength % eInfo.BlockSize
}
// Keep required bytes into buf.
buf := dataBlocks
// If this is start block, skip unwanted bytes.
if block == startBlock {
buf = append([]byte{}, dataBlocks[bytesToSkip:]...)
outOffset = bytesToSkip
}
// If this is end block, retain only required bytes.
if block == endBlock {
buf = append([]byte{}, buf[:length-bytesWritten]...)
// Total data to be read.
outSize = blockSize
if length-bytesWritten < blockSize {
// We should not send more data than what was requested.
outSize = length - bytesWritten
}
// Copy data blocks.
var n int64
n, err = io.Copy(writer, bytes.NewReader(buf))
bytesWritten += int64(n)
// Write data blocks.
n, err := writeDataBlocks(writer, enBlocks, eInfo.DataBlocks, outOffset, outSize)
if err != nil {
return bytesWritten, err
}
bytesWritten += n
}
return bytesWritten, nil
@ -179,23 +256,18 @@ func toDiskIndex(blockIdx int, distribution []int) int {
// isValidBlock - calculates the checksum hash for the block and
// validates if its correct returns true for valid cases, false otherwise.
func isValidBlock(disks []StorageAPI, volume, path string, diskIndex int, blockCheckSums []checkSumInfo) (ok bool) {
func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) {
ok = false
// Unknown block index requested, treat it as error.
if diskIndex == -1 {
return ok
}
// Disk is not present, treat entire block to be non existent.
if disks[diskIndex] == nil {
return ok
if disk == nil {
return false
}
// Read everything for a given block and calculate hash.
hashWriter := newHash(blockCheckSums[diskIndex].Algorithm)
hashBytes, err := hashSum(disks[diskIndex], volume, path, hashWriter)
hashWriter := newHash(blockCheckSum.Algorithm)
hashBytes, err := hashSum(disk, volume, path, hashWriter)
if err != nil {
return ok
}
ok = hex.EncodeToString(hashBytes) == blockCheckSums[diskIndex].Hash
ok = hex.EncodeToString(hashBytes) == blockCheckSum.Hash
return ok
}

View File

@ -17,6 +17,7 @@
package main
import (
"bytes"
"crypto/sha512"
"hash"
"io"
@ -62,43 +63,88 @@ func hashSum(disk StorageAPI, volume, path string, writer hash.Hash) ([]byte, er
return writer.Sum(nil), nil
}
// getDataBlocks - fetches the data block only part of the input encoded blocks.
func getDataBlocks(enBlocks [][]byte, dataBlocks int, curBlockSize int) (data []byte, err error) {
if len(enBlocks) < dataBlocks {
return nil, reedsolomon.ErrTooFewShards
}
// getDataBlockLen - get length of data blocks from encoded blocks.
func getDataBlockLen(enBlocks [][]byte, dataBlocks int) int {
size := 0
blocks := enBlocks[:dataBlocks]
for _, block := range blocks {
// Figure out the data block length.
for _, block := range enBlocks[:dataBlocks] {
size += len(block)
}
if size < curBlockSize {
return nil, reedsolomon.ErrShortData
return size
}
// Writes all the data blocks from encoded blocks until requested
// outSize length. Provides a way to skip bytes until the offset.
func writeDataBlocks(dst io.Writer, enBlocks [][]byte, dataBlocks int, outOffset int64, outSize int64) (int64, error) {
// Do we have enough blocks?
if len(enBlocks) < dataBlocks {
return 0, reedsolomon.ErrTooFewShards
}
write := curBlockSize
for _, block := range blocks {
if write < len(block) {
data = append(data, block[:write]...)
return data, nil
// Do we have enough data?
if int64(getDataBlockLen(enBlocks, dataBlocks)) < outSize {
return 0, reedsolomon.ErrShortData
}
data = append(data, block...)
write -= len(block)
// Counter to decrement total left to write.
write := outSize
// Counter to increment total written.
totalWritten := int64(0)
// Write all data blocks to dst.
for _, block := range enBlocks[:dataBlocks] {
// Skip blocks until we have reached our offset.
if outOffset >= int64(len(block)) {
// Decrement offset.
outOffset -= int64(len(block))
continue
} else {
// Skip until offset.
block = block[outOffset:]
// Reset the offset for next iteration to read everything
// from subsequent blocks.
outOffset = 0
}
return data, nil
// We have written all the blocks, write the last remaining block.
if write < int64(len(block)) {
n, err := io.Copy(dst, bytes.NewReader(block[:write]))
if err != nil {
return 0, err
}
totalWritten += n
break
}
// Copy the block.
n, err := io.Copy(dst, bytes.NewReader(block))
if err != nil {
return 0, err
}
// Decrement output size.
write -= n
// Increment written.
totalWritten += n
}
// Success.
return totalWritten, nil
}
// getBlockInfo - find start/end block and bytes to skip for given offset, length and block size.
func getBlockInfo(offset, length, blockSize int64) (startBlock, bytesToSkip, endBlock int64) {
func getBlockInfo(offset, length, blockSize int64) (startBlock, endBlock, bytesToSkip int64) {
// Calculate start block for given offset and how many bytes to skip to get the offset.
startBlock = offset / blockSize
bytesToSkip = offset % blockSize
// Calculate end block for given size to read
endBlock = (offset + length) / blockSize
if endBlock > 0 && (offset+length)%blockSize == 0 {
endBlock--
}
endBlock = length / blockSize
return
}
// calculate the blockSize based on input length and total number of
// data blocks.
func getEncodedBlockLen(inputLen int64, dataBlocks int) (curEncBlockSize int64) {
curEncBlockSize = (inputLen + int64(dataBlocks) - 1) / int64(dataBlocks)
return curEncBlockSize
}

View File

@ -840,15 +840,17 @@ func (s *MyAPIXLSuite) TestPartialContent(c *C) {
c.Assert(response.StatusCode, Equals, http.StatusOK)
// Prepare request
var table = []struct {
var testCases = []struct {
byteRange string
expectedString string
}{
{"6-7", "Wo"},
{"4-7", "o Wo"},
{"1-", "ello World"},
{"6-", "World"},
{"-2", "ld"},
{"-7", "o World"},
}
for _, t := range table {
for _, t := range testCases {
request, err = newTestRequest("GET", s.testServer.Server.URL+"/partial-content/bar",
0, nil, s.testServer.AccessKey, s.testServer.SecretKey)
c.Assert(err, IsNil)

View File

@ -91,22 +91,29 @@ func (xl xlObjects) GetObject(bucket, object string, startOffset int64, length i
totalBytesRead := int64(0)
// Read from all parts.
for ; partIndex <= lastPartIndex; partIndex++ {
if length == totalBytesRead {
break
}
// Save the current part name and size.
partName := xlMeta.Parts[partIndex].Name
partSize := xlMeta.Parts[partIndex].Size
if partSize > (length - totalBytesRead) {
partSize = length - totalBytesRead
readSize := partSize - partOffset
// readSize should be adjusted so that we don't write more data than what was requested.
if readSize > (length - totalBytesRead) {
readSize = length - totalBytesRead
}
// Start reading the part name.
n, err := erasureReadFile(writer, onlineDisks, bucket, pathJoin(object, partName), partName, eInfos, partOffset, partSize)
n, err := erasureReadFile(writer, onlineDisks, bucket, pathJoin(object, partName), partName, eInfos, partOffset, readSize, partSize)
if err != nil {
return err
}
totalBytesRead += n
// Reset part offset to 0 to read rest of the part from the beginning.
// partOffset will be valid only for the first part, hence reset it to 0 for
// the remaining parts.
partOffset = 0
} // End of read all parts loop.