mirror of
https://github.com/minio/minio.git
synced 2025-11-07 21:02:58 -05:00
rename all remaining packages to internal/ (#12418)
This is to ensure that there are no projects that try to import `minio/minio/pkg` into their own repo. Any such common packages should go to `https://github.com/minio/pkg`
This commit is contained in:
179
internal/crypto/key.go
Normal file
179
internal/crypto/key.go
Normal file
@@ -0,0 +1,179 @@
|
||||
// Copyright (c) 2015-2021 MinIO, Inc.
|
||||
//
|
||||
// This file is part of MinIO Object Storage stack
|
||||
//
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package crypto
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"crypto/hmac"
|
||||
"crypto/rand"
|
||||
"crypto/sha256"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
"path"
|
||||
|
||||
"github.com/minio/minio/internal/fips"
|
||||
"github.com/minio/minio/internal/logger"
|
||||
"github.com/minio/sio"
|
||||
)
|
||||
|
||||
// ObjectKey is a 256 bit secret key used to encrypt the object.
|
||||
// It must never be stored in plaintext.
|
||||
type ObjectKey [32]byte
|
||||
|
||||
// GenerateKey generates a unique ObjectKey from a 256 bit external key
|
||||
// and a source of randomness. If random is nil the default PRNG of the
|
||||
// system (crypto/rand) is used.
|
||||
func GenerateKey(extKey []byte, random io.Reader) (key ObjectKey) {
|
||||
if random == nil {
|
||||
random = rand.Reader
|
||||
}
|
||||
if len(extKey) != 32 { // safety check
|
||||
logger.CriticalIf(context.Background(), errors.New("crypto: invalid key length"))
|
||||
}
|
||||
var nonce [32]byte
|
||||
if _, err := io.ReadFull(random, nonce[:]); err != nil {
|
||||
logger.CriticalIf(context.Background(), errOutOfEntropy)
|
||||
}
|
||||
sha := sha256.New()
|
||||
sha.Write(extKey)
|
||||
sha.Write(nonce[:])
|
||||
sha.Sum(key[:0])
|
||||
return key
|
||||
}
|
||||
|
||||
// GenerateIV generates a new random 256 bit IV from the provided source
|
||||
// of randomness. If random is nil the default PRNG of the system
|
||||
// (crypto/rand) is used.
|
||||
func GenerateIV(random io.Reader) (iv [32]byte) {
|
||||
if random == nil {
|
||||
random = rand.Reader
|
||||
}
|
||||
if _, err := io.ReadFull(random, iv[:]); err != nil {
|
||||
logger.CriticalIf(context.Background(), errOutOfEntropy)
|
||||
}
|
||||
return iv
|
||||
}
|
||||
|
||||
// SealedKey represents a sealed object key. It can be stored
|
||||
// at an untrusted location.
|
||||
type SealedKey struct {
|
||||
Key [64]byte // The encrypted and authenticted object-key.
|
||||
IV [32]byte // The random IV used to encrypt the object-key.
|
||||
Algorithm string // The sealing algorithm used to encrypt the object key.
|
||||
}
|
||||
|
||||
// Seal encrypts the ObjectKey using the 256 bit external key and IV. The sealed
|
||||
// key is also cryptographically bound to the object's path (bucket/object) and the
|
||||
// domain (SSE-C or SSE-S3).
|
||||
func (key ObjectKey) Seal(extKey []byte, iv [32]byte, domain, bucket, object string) SealedKey {
|
||||
if len(extKey) != 32 {
|
||||
logger.CriticalIf(context.Background(), errors.New("crypto: invalid key length"))
|
||||
}
|
||||
var (
|
||||
sealingKey [32]byte
|
||||
encryptedKey bytes.Buffer
|
||||
)
|
||||
mac := hmac.New(sha256.New, extKey[:])
|
||||
mac.Write(iv[:])
|
||||
mac.Write([]byte(domain))
|
||||
mac.Write([]byte(SealAlgorithm))
|
||||
mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object'
|
||||
mac.Sum(sealingKey[:0])
|
||||
if n, err := sio.Encrypt(&encryptedKey, bytes.NewReader(key[:]), sio.Config{Key: sealingKey[:], CipherSuites: fips.CipherSuitesDARE()}); n != 64 || err != nil {
|
||||
logger.CriticalIf(context.Background(), errors.New("Unable to generate sealed key"))
|
||||
}
|
||||
sealedKey := SealedKey{
|
||||
IV: iv,
|
||||
Algorithm: SealAlgorithm,
|
||||
}
|
||||
copy(sealedKey.Key[:], encryptedKey.Bytes())
|
||||
return sealedKey
|
||||
}
|
||||
|
||||
// Unseal decrypts a sealed key using the 256 bit external key. Since the sealed key
|
||||
// may be cryptographically bound to the object's path the same bucket/object as during sealing
|
||||
// must be provided. On success the ObjectKey contains the decrypted sealed key.
|
||||
func (key *ObjectKey) Unseal(extKey []byte, sealedKey SealedKey, domain, bucket, object string) error {
|
||||
var (
|
||||
unsealConfig sio.Config
|
||||
)
|
||||
switch sealedKey.Algorithm {
|
||||
default:
|
||||
return Errorf("The sealing algorithm '%s' is not supported", sealedKey.Algorithm)
|
||||
case SealAlgorithm:
|
||||
mac := hmac.New(sha256.New, extKey[:])
|
||||
mac.Write(sealedKey.IV[:])
|
||||
mac.Write([]byte(domain))
|
||||
mac.Write([]byte(SealAlgorithm))
|
||||
mac.Write([]byte(path.Join(bucket, object))) // use path.Join for canonical 'bucket/object'
|
||||
unsealConfig = sio.Config{MinVersion: sio.Version20, Key: mac.Sum(nil), CipherSuites: fips.CipherSuitesDARE()}
|
||||
case InsecureSealAlgorithm:
|
||||
sha := sha256.New()
|
||||
sha.Write(extKey[:])
|
||||
sha.Write(sealedKey.IV[:])
|
||||
unsealConfig = sio.Config{MinVersion: sio.Version10, Key: sha.Sum(nil), CipherSuites: fips.CipherSuitesDARE()}
|
||||
}
|
||||
|
||||
if out, err := sio.DecryptBuffer(key[:0], sealedKey.Key[:], unsealConfig); len(out) != 32 || err != nil {
|
||||
return ErrSecretKeyMismatch
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// DerivePartKey derives an unique 256 bit key from an ObjectKey and the part index.
|
||||
func (key ObjectKey) DerivePartKey(id uint32) (partKey [32]byte) {
|
||||
var bin [4]byte
|
||||
binary.LittleEndian.PutUint32(bin[:], id)
|
||||
|
||||
mac := hmac.New(sha256.New, key[:])
|
||||
mac.Write(bin[:])
|
||||
mac.Sum(partKey[:0])
|
||||
return partKey
|
||||
}
|
||||
|
||||
// SealETag seals the etag using the object key.
|
||||
// It does not encrypt empty ETags because such ETags indicate
|
||||
// that the S3 client hasn't sent an ETag = MD5(object) and
|
||||
// the backend can pick an ETag value.
|
||||
func (key ObjectKey) SealETag(etag []byte) []byte {
|
||||
if len(etag) == 0 { // don't encrypt empty ETag - only if client sent ETag = MD5(object)
|
||||
return etag
|
||||
}
|
||||
var buffer bytes.Buffer
|
||||
mac := hmac.New(sha256.New, key[:])
|
||||
mac.Write([]byte("SSE-etag"))
|
||||
if _, err := sio.Encrypt(&buffer, bytes.NewReader(etag), sio.Config{Key: mac.Sum(nil), CipherSuites: fips.CipherSuitesDARE()}); err != nil {
|
||||
logger.CriticalIf(context.Background(), errors.New("Unable to encrypt ETag using object key"))
|
||||
}
|
||||
return buffer.Bytes()
|
||||
}
|
||||
|
||||
// UnsealETag unseals the etag using the provided object key.
|
||||
// It does not try to decrypt the ETag if len(etag) == 16
|
||||
// because such ETags indicate that the S3 client hasn't sent
|
||||
// an ETag = MD5(object) and the backend has picked an ETag value.
|
||||
func (key ObjectKey) UnsealETag(etag []byte) ([]byte, error) {
|
||||
if !IsETagSealed(etag) {
|
||||
return etag, nil
|
||||
}
|
||||
mac := hmac.New(sha256.New, key[:])
|
||||
mac.Write([]byte("SSE-etag"))
|
||||
return sio.DecryptBuffer(make([]byte, 0, len(etag)), etag, sio.Config{Key: mac.Sum(nil), CipherSuites: fips.CipherSuitesDARE()})
|
||||
}
|
||||
Reference in New Issue
Block a user