minio/cmd/encryption-v1.go

1181 lines
37 KiB
Go
Raw Permalink Normal View History

// Copyright (c) 2015-2023 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cmd
import (
"bufio"
"bytes"
"context"
"crypto/hmac"
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"net/http"
"path"
"strconv"
"strings"
"github.com/minio/kms-go/kes"
"github.com/minio/minio/internal/crypto"
"github.com/minio/minio/internal/etag"
"github.com/minio/minio/internal/fips"
"github.com/minio/minio/internal/hash"
"github.com/minio/minio/internal/hash/sha256"
xhttp "github.com/minio/minio/internal/http"
"github.com/minio/minio/internal/kms"
"github.com/minio/minio/internal/logger"
"github.com/minio/sio"
)
var (
// AWS errors for invalid SSE-C requests.
errEncryptedObject = errors.New("The object was stored using a form of SSE")
errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
errKMSNotConfigured = errors.New("KMS not configured for a server side encrypted objects")
errKMSKeyNotFound = errors.New("Unknown KMS key ID")
errKMSDefaultKeyAlreadyConfigured = errors.New("A default encryption already exists on KMS")
// Additional MinIO errors for SSE-C requests.
errObjectTampered = errors.New("The requested object was modified and may be compromised")
// error returned when invalid encryption parameters are specified
errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object")
errInvalidEncryptionParametersSSEC = errors.New("SSE-C encryption parameters are not supported on this bucket")
)
const (
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
SSECustomerKeySize = 32
// SSEIVSize is the size of the IV data
SSEIVSize = 32 // 32 bytes
// SSEDAREPackageBlockSize - SSE dare package block size.
SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
// SSEDAREPackageMetaSize - SSE dare package meta padding bytes.
SSEDAREPackageMetaSize = 32 // 32 bytes
)
// KMSKeyID returns in AWS compatible KMS KeyID() format.
func (o *ObjectInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) }
// KMSKeyID returns in AWS compatible KMS KeyID() format.
func (o *MultipartInfo) KMSKeyID() string { return kmsKeyIDFromMetadata(o.UserDefined) }
// kmsKeyIDFromMetadata returns any AWS S3 KMS key ID in the
// metadata, if any. It returns an empty ID if no key ID is
// present.
func kmsKeyIDFromMetadata(metadata map[string]string) string {
const ARNPrefix = crypto.ARNPrefix
if len(metadata) == 0 {
return ""
}
kmsID, ok := metadata[crypto.MetaKeyID]
if !ok {
return ""
}
if strings.HasPrefix(kmsID, ARNPrefix) {
return kmsID
}
return ARNPrefix + kmsID
}
// DecryptETags decryptes the ETag of all ObjectInfos using the KMS.
//
// It adjusts the size of all encrypted objects since encrypted
// objects are slightly larger due to encryption overhead.
// Further, it decrypts all single-part SSE-S3 encrypted objects
// and formats ETags of SSE-C / SSE-KMS encrypted objects to
// be AWS S3 compliant.
//
// DecryptETags uses a KMS bulk decryption API, if available, which
// is more efficient than decrypting ETags sequentually.
func DecryptETags(ctx context.Context, k *kms.KMS, objects []ObjectInfo) error {
const BatchSize = 250 // We process the objects in batches - 250 is a reasonable default.
var (
metadata = make([]map[string]string, 0, BatchSize)
buckets = make([]string, 0, BatchSize)
names = make([]string, 0, BatchSize)
)
for len(objects) > 0 {
N := BatchSize
if len(objects) < BatchSize {
N = len(objects)
}
batch := objects[:N]
// We have to decrypt only ETags of SSE-S3 single-part
// objects.
// Therefore, we remember which objects (there index)
// in the current batch are single-part SSE-S3 objects.
metadata = metadata[:0:N]
buckets = buckets[:0:N]
names = names[:0:N]
SSES3SinglePartObjects := make(map[int]bool)
for i, object := range batch {
listing: decrypt only SSE-S3 single-part ETags (#14638) This commit optimises the ETag decryption when listing objects. When MinIO lists objects, it has to decrypt the ETags of single-part SSE-S3 objects. It does not need to decrypt ETags of - plaintext objects => Their ETag is not encrypted - SSE-C objects => Their ETag is not the content MD5 - SSE-KMS objects => Their ETag is not the content MD5 - multipart objects => Their ETag is not encrypted Hence, MinIO only needs to make a call to the KMS when it needs to decrypt a single-part SSE-S3 object. It can resolve the ETags off all other object types locally. This commit implements the above semantics by processing an object listing in batches. If the batch contains no single-part SSE-S3 object, then no KMS calls will be made. If the batch contains at least one single-part SSE-S3 object we have to make at least one KMS call. No we first filter all single-part SSE-S3 objects such that we only request the decryption keys for these objects. Once we know which objects resp. ETags require a decryption key, MinIO either uses the KES bulk decryption API (if supported) or decrypts each ETag serially. This commit is a significant improvement compared to the previous listing code. Before, a single non-SSE-S3 object caused MinIO to fall-back to a serial ETag decryption. For example, if a batch consisted of 249 SSE-S3 objects and one single SSE-KMS object, MinIO would send 249 requests to the KMS. Now, MinIO will send a single request for exactly those 249 objects and skip the one SSE-KMS object since it can handle its ETag locally. Further, MinIO would request decryption keys for SSE-S3 multipart objects in the past - even though multipart ETags are not encrypted. So, if a bucket contained only multipart SSE-S3 objects, MinIO would make totally unnecessary requests to the KMS. Now, MinIO simply skips these multipart objects since it can handle the ETags locally. Signed-off-by: Andreas Auernhammer <hi@aead.dev>
2022-03-27 21:34:11 -04:00
if kind, ok := crypto.IsEncrypted(object.UserDefined); ok && kind == crypto.S3 && !crypto.IsMultiPart(object.UserDefined) {
ETag, err := etag.Parse(object.ETag)
if err != nil {
continue
}
if ETag.IsEncrypted() {
SSES3SinglePartObjects[i] = true
metadata = append(metadata, object.UserDefined)
buckets = append(buckets, object.Bucket)
names = append(names, object.Name)
}
}
}
// If there are no SSE-S3 single-part objects
// we can skip the decryption process. However,
// we still have to adjust the size and ETag
// of SSE-C and SSE-KMS objects.
if len(SSES3SinglePartObjects) == 0 {
for i := range batch {
size, err := batch[i].GetActualSize()
if err != nil {
return err
}
batch[i].Size = size
if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok {
ETag, err := etag.Parse(batch[i].ETag)
if err != nil {
return err
}
batch[i].ETag = ETag.Format().String()
}
}
objects = objects[N:]
continue
}
// There is at least one SSE-S3 single-part object.
// For all SSE-S3 single-part objects we have to
// fetch their decryption keys. We do this using
// a Bulk-Decryption API call, if available.
keys, err := crypto.S3.UnsealObjectKeys(ctx, k, metadata, buckets, names)
if err != nil {
return err
}
// Now, we have to decrypt the ETags of SSE-S3 single-part
// objects and adjust the size and ETags of all encrypted
// objects.
for i := range batch {
size, err := batch[i].GetActualSize()
if err != nil {
return err
}
batch[i].Size = size
if _, ok := crypto.IsEncrypted(batch[i].UserDefined); ok {
ETag, err := etag.Parse(batch[i].ETag)
if err != nil {
return err
}
if SSES3SinglePartObjects[i] {
ETag, err = etag.Decrypt(keys[0][:], ETag)
listing: decrypt only SSE-S3 single-part ETags (#14638) This commit optimises the ETag decryption when listing objects. When MinIO lists objects, it has to decrypt the ETags of single-part SSE-S3 objects. It does not need to decrypt ETags of - plaintext objects => Their ETag is not encrypted - SSE-C objects => Their ETag is not the content MD5 - SSE-KMS objects => Their ETag is not the content MD5 - multipart objects => Their ETag is not encrypted Hence, MinIO only needs to make a call to the KMS when it needs to decrypt a single-part SSE-S3 object. It can resolve the ETags off all other object types locally. This commit implements the above semantics by processing an object listing in batches. If the batch contains no single-part SSE-S3 object, then no KMS calls will be made. If the batch contains at least one single-part SSE-S3 object we have to make at least one KMS call. No we first filter all single-part SSE-S3 objects such that we only request the decryption keys for these objects. Once we know which objects resp. ETags require a decryption key, MinIO either uses the KES bulk decryption API (if supported) or decrypts each ETag serially. This commit is a significant improvement compared to the previous listing code. Before, a single non-SSE-S3 object caused MinIO to fall-back to a serial ETag decryption. For example, if a batch consisted of 249 SSE-S3 objects and one single SSE-KMS object, MinIO would send 249 requests to the KMS. Now, MinIO will send a single request for exactly those 249 objects and skip the one SSE-KMS object since it can handle its ETag locally. Further, MinIO would request decryption keys for SSE-S3 multipart objects in the past - even though multipart ETags are not encrypted. So, if a bucket contained only multipart SSE-S3 objects, MinIO would make totally unnecessary requests to the KMS. Now, MinIO simply skips these multipart objects since it can handle the ETags locally. Signed-off-by: Andreas Auernhammer <hi@aead.dev>
2022-03-27 21:34:11 -04:00
if err != nil {
return err
}
keys = keys[1:]
listing: decrypt only SSE-S3 single-part ETags (#14638) This commit optimises the ETag decryption when listing objects. When MinIO lists objects, it has to decrypt the ETags of single-part SSE-S3 objects. It does not need to decrypt ETags of - plaintext objects => Their ETag is not encrypted - SSE-C objects => Their ETag is not the content MD5 - SSE-KMS objects => Their ETag is not the content MD5 - multipart objects => Their ETag is not encrypted Hence, MinIO only needs to make a call to the KMS when it needs to decrypt a single-part SSE-S3 object. It can resolve the ETags off all other object types locally. This commit implements the above semantics by processing an object listing in batches. If the batch contains no single-part SSE-S3 object, then no KMS calls will be made. If the batch contains at least one single-part SSE-S3 object we have to make at least one KMS call. No we first filter all single-part SSE-S3 objects such that we only request the decryption keys for these objects. Once we know which objects resp. ETags require a decryption key, MinIO either uses the KES bulk decryption API (if supported) or decrypts each ETag serially. This commit is a significant improvement compared to the previous listing code. Before, a single non-SSE-S3 object caused MinIO to fall-back to a serial ETag decryption. For example, if a batch consisted of 249 SSE-S3 objects and one single SSE-KMS object, MinIO would send 249 requests to the KMS. Now, MinIO will send a single request for exactly those 249 objects and skip the one SSE-KMS object since it can handle its ETag locally. Further, MinIO would request decryption keys for SSE-S3 multipart objects in the past - even though multipart ETags are not encrypted. So, if a bucket contained only multipart SSE-S3 objects, MinIO would make totally unnecessary requests to the KMS. Now, MinIO simply skips these multipart objects since it can handle the ETags locally. Signed-off-by: Andreas Auernhammer <hi@aead.dev>
2022-03-27 21:34:11 -04:00
}
batch[i].ETag = ETag.Format().String()
}
}
objects = objects[N:]
}
return nil
}
// isMultipart returns true if the current object is
// uploaded by the user using multipart mechanism:
// initiate new multipart, upload part, complete upload
func (o *ObjectInfo) isMultipart() bool {
_, encrypted := crypto.IsEncrypted(o.UserDefined)
if encrypted {
if !crypto.IsMultiPart(o.UserDefined) {
return false
}
for _, part := range o.Parts {
_, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return false
}
}
}
// Further check if this object is uploaded using multipart mechanism
// by the user and it is not about Erasure internally splitting the
// object into parts in PutObject()
return len(o.ETag) != 32
}
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) {
if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) {
return nil, crypto.ErrIncompatibleEncryptionMethod
}
k, err := crypto.SSECopy.ParseHTTP(h)
return k[:], err
}
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
return ParseSSECustomerHeader(r.Header)
}
// ParseSSECustomerHeader parses the SSE-C header fields and returns
// the client provided key on success.
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) {
return key, crypto.ErrIncompatibleEncryptionMethod
}
k, err := crypto.SSEC.ParseHTTP(header)
return k[:], err
}
// This function rotates old to new key.
func rotateKey(ctx context.Context, oldKey []byte, newKeyID string, newKey []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) error {
kind, _ := crypto.IsEncrypted(metadata)
switch kind {
case crypto.S3:
if GlobalKMS == nil {
return errKMSNotConfigured
}
keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
if err != nil {
return err
}
oldKey, err := GlobalKMS.Decrypt(ctx, &kms.DecryptRequest{
Name: keyID,
Ciphertext: kmsKey,
AssociatedData: kms.Context{bucket: path.Join(bucket, object)},
})
if err != nil {
return err
}
var objectKey crypto.ObjectKey
if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
return err
}
newKey, err := GlobalKMS.GenerateKey(ctx, &kms.GenerateKeyRequest{
Name: GlobalKMS.DefaultKey,
AssociatedData: kms.Context{bucket: path.Join(bucket, object)},
})
if err != nil {
return err
}
sealedKey = objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
crypto.S3.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey)
return nil
case crypto.S3KMS:
if GlobalKMS == nil {
return errKMSNotConfigured
}
objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
if err != nil {
return err
}
if len(cryptoCtx) == 0 {
_, _, _, cryptoCtx, err = crypto.S3KMS.ParseMetadata(metadata)
if err != nil {
return err
}
}
// If the context does not contain the bucket key
// we must add it for key generation. However,
// the context must be stored exactly like the
// client provided it. Therefore, we create a copy
// of the client provided context and add the bucket
// key, if not present.
kmsCtx := kms.Context{}
for k, v := range cryptoCtx {
kmsCtx[k] = v
}
if _, ok := kmsCtx[bucket]; !ok {
kmsCtx[bucket] = path.Join(bucket, object)
}
newKey, err := GlobalKMS.GenerateKey(ctx, &kms.GenerateKeyRequest{
Name: newKeyID,
AssociatedData: kmsCtx,
})
if err != nil {
return err
}
sealedKey := objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
crypto.S3KMS.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey, cryptoCtx)
return nil
case crypto.SSEC:
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
if err != nil {
return err
}
var objectKey crypto.ObjectKey
if err = objectKey.Unseal(oldKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
}
return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied.
}
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm {
return nil // don't rotate on equal keys if seal algorithm is latest
}
sealedKey = objectKey.Seal(newKey, sealedKey.IV, crypto.SSEC.String(), bucket, object)
crypto.SSEC.CreateMetadata(metadata, sealedKey)
return nil
default:
return errObjectTampered
}
}
func newEncryptMetadata(ctx context.Context, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) (crypto.ObjectKey, error) {
var sealedKey crypto.SealedKey
switch kind {
case crypto.S3:
if GlobalKMS == nil {
return crypto.ObjectKey{}, errKMSNotConfigured
}
key, err := GlobalKMS.GenerateKey(ctx, &kms.GenerateKeyRequest{
AssociatedData: kms.Context{bucket: path.Join(bucket, object)},
})
if err != nil {
return crypto.ObjectKey{}, err
}
objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
crypto.S3.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey)
return objectKey, nil
case crypto.S3KMS:
if GlobalKMS == nil {
return crypto.ObjectKey{}, errKMSNotConfigured
}
// If the context does not contain the bucket key
// we must add it for key generation. However,
// the context must be stored exactly like the
// client provided it. Therefore, we create a copy
// of the client provided context and add the bucket
// key, if not present.
kmsCtx := kms.Context{}
for k, v := range cryptoCtx {
kmsCtx[k] = v
}
if _, ok := kmsCtx[bucket]; !ok {
kmsCtx[bucket] = path.Join(bucket, object)
}
key, err := GlobalKMS.GenerateKey(ctx, &kms.GenerateKeyRequest{
Name: keyID,
AssociatedData: kmsCtx,
})
if err != nil {
if errors.Is(err, kes.ErrKeyNotFound) {
return crypto.ObjectKey{}, errKMSKeyNotFound
}
return crypto.ObjectKey{}, err
}
objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
crypto.S3KMS.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey, cryptoCtx)
return objectKey, nil
case crypto.SSEC:
objectKey := crypto.GenerateKey(key, rand.Reader)
sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object)
crypto.SSEC.CreateMetadata(metadata, sealedKey)
return objectKey, nil
default:
return crypto.ObjectKey{}, fmt.Errorf("encryption type '%v' not supported", kind)
}
}
func newEncryptReader(ctx context.Context, content io.Reader, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, cryptoCtx kms.Context) (io.Reader, crypto.ObjectKey, error) {
objectEncryptionKey, err := newEncryptMetadata(ctx, kind, keyID, key, bucket, object, metadata, cryptoCtx)
if err != nil {
return nil, crypto.ObjectKey{}, err
}
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20, CipherSuites: fips.DARECiphers()})
if err != nil {
return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey
}
return reader, objectEncryptionKey, nil
}
// set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of
// SSE-S3
func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) {
var (
key []byte
keyID string
kmsCtx kms.Context
)
kind, _ := crypto.IsRequested(r.Header)
switch kind {
case crypto.SSEC:
key, err = ParseSSECustomerRequest(r)
if err != nil {
return err
}
case crypto.S3KMS:
keyID, kmsCtx, err = crypto.S3KMS.ParseHTTP(r.Header)
if err != nil {
return err
}
}
_, err = newEncryptMetadata(r.Context(), kind, keyID, key, bucket, object, metadata, kmsCtx)
return
}
// EncryptRequest takes the client provided content and encrypts the data
// with the client provided key. It also marks the object as client-side-encrypted
// and sets the correct headers.
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) {
if r.ContentLength > encryptBufferThreshold {
// The encryption reads in blocks of 64KB.
// We add a buffer on bigger files to reduce the number of syscalls upstream.
content = bufio.NewReaderSize(content, encryptBufferSize)
}
var (
key []byte
keyID string
ctx kms.Context
err error
)
kind, _ := crypto.IsRequested(r.Header)
if kind == crypto.SSEC {
key, err = ParseSSECustomerRequest(r)
if err != nil {
return nil, crypto.ObjectKey{}, err
}
}
if kind == crypto.S3KMS {
keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header)
if err != nil {
return nil, crypto.ObjectKey{}, err
}
}
return newEncryptReader(r.Context(), content, kind, keyID, key, bucket, object, metadata, ctx)
}
func decryptObjectMeta(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
switch kind, _ := crypto.IsEncrypted(metadata); kind {
case crypto.S3:
if GlobalKMS == nil {
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
return nil, errKMSNotConfigured
}
objectKey, err := crypto.S3.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
if err != nil {
return nil, err
}
return objectKey[:], nil
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
case crypto.S3KMS:
if GlobalKMS == nil {
return nil, errKMSNotConfigured
}
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
if err != nil {
return nil, err
}
return objectKey[:], nil
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
case crypto.SSEC:
sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
if err != nil {
return nil, err
}
var objectKey crypto.ObjectKey
if err = objectKey.Unseal(key, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
return nil, err
}
return objectKey[:], nil
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
default:
return nil, errObjectTampered
}
}
// Adding support for reader based interface
// DecryptRequestWithSequenceNumberR - same as
// DecryptRequestWithSequenceNumber but with a reader
func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
if crypto.SSEC.IsEncrypted(metadata) {
key, err := ParseSSECustomerHeader(h)
if err != nil {
return nil, err
}
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
}
return newDecryptReader(client, nil, bucket, object, seqNumber, metadata)
}
// DecryptCopyRequestR - same as DecryptCopyRequest, but with a
// Reader
func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
var (
key []byte
err error
)
if crypto.SSECopy.IsRequested(h) {
key, err = ParseSSECopyCustomerRequest(h, metadata)
if err != nil {
return nil, err
}
}
return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
}
func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
objectEncryptionKey, err := decryptObjectMeta(key, bucket, object, metadata)
if err != nil {
return nil, err
}
return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber)
}
func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) {
reader, err := sio.DecryptReader(client, sio.Config{
Key: objectEncryptionKey,
SequenceNumber: seqNumber,
CipherSuites: fips.DARECiphers(),
})
if err != nil {
return nil, crypto.ErrInvalidCustomerKey
}
return reader, nil
}
// DecryptBlocksRequestR - same as DecryptBlocksRequest but with a
// reader
func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (io.Reader, error) {
bucket, object := oi.Bucket, oi.Name
// Single part case
if !oi.isMultipart() {
var reader io.Reader
var err error
if copySource {
reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
} else {
reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
}
if err != nil {
return nil, err
}
return reader, nil
}
partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize
partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
w := &DecryptBlocksReader{
reader: inputReader,
startSeqNum: seqNumber,
partDecRelOffset: partDecRelOffset,
partEncRelOffset: partEncRelOffset,
parts: oi.Parts,
partIndex: partStart,
}
// In case of SSE-C, we have to decrypt the OEK using the client-provided key.
// In case of a SSE-C server-side copy, the client might provide two keys,
// one for the source and one for the target. This reader is the source.
var ssecClientKey []byte
if crypto.SSEC.IsEncrypted(oi.UserDefined) {
if copySource && crypto.SSECopy.IsRequested(h) {
key, err := crypto.SSECopy.ParseHTTP(h)
if err != nil {
return nil, err
}
ssecClientKey = key[:]
} else {
key, err := crypto.SSEC.ParseHTTP(h)
if err != nil {
return nil, err
}
ssecClientKey = key[:]
}
}
// Decrypt the OEK once and reuse it for all subsequent parts.
objectEncryptionKey, err := decryptObjectMeta(ssecClientKey, bucket, object, oi.UserDefined)
if err != nil {
return nil, err
}
w.objectEncryptionKey = objectEncryptionKey
if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
return nil, err
}
return w, nil
}
// DecryptBlocksReader - decrypts multipart parts, while implementing
// a io.Reader compatible interface.
type DecryptBlocksReader struct {
// Source of the encrypted content that will be decrypted
reader io.Reader
// Current decrypter for the current encrypted data block
decrypter io.Reader
// Start sequence number
startSeqNum uint32
// Current part index
partIndex int
// Parts information
parts []ObjectPartInfo
objectEncryptionKey []byte
partDecRelOffset, partEncRelOffset int64
}
func (d *DecryptBlocksReader) buildDecrypter(partID int) error {
var partIDbin [4]byte
binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
mac := hmac.New(sha256.New, d.objectEncryptionKey) // derive part encryption key from part ID and object key
mac.Write(partIDbin[:])
partEncryptionKey := mac.Sum(nil)
// Limit the reader, so the decryptor doesn't receive bytes
// from the next part (different DARE stream)
encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset
decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum)
if err != nil {
return err
}
d.decrypter = decrypter
return nil
}
func (d *DecryptBlocksReader) Read(p []byte) (int, error) {
var err error
var n1 int
decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size))
unreadPartLen := int64(decPartSize) - d.partDecRelOffset
if int64(len(p)) < unreadPartLen {
n1, err = d.decrypter.Read(p)
if err != nil {
return 0, err
}
d.partDecRelOffset += int64(n1)
} else {
n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen])
if err != nil {
return 0, err
}
// We should now proceed to next part, reset all
// values appropriately.
d.partEncRelOffset = 0
d.partDecRelOffset = 0
d.startSeqNum = 0
d.partIndex++
if d.partIndex == len(d.parts) {
return n1, io.EOF
}
err = d.buildDecrypter(d.parts[d.partIndex].Number)
if err != nil {
return 0, err
}
n1, err = d.decrypter.Read(p[n1:])
if err != nil {
return 0, err
}
d.partDecRelOffset += int64(n1)
}
return len(p), nil
}
// DecryptedSize returns the size of the object after decryption in bytes.
// It returns an error if the object is not encrypted or marked as encrypted
// but has an invalid size.
func (o ObjectInfo) DecryptedSize() (int64, error) {
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
return -1, errors.New("Cannot compute decrypted size of an unencrypted object")
}
if !o.isMultipart() {
size, err := sio.DecryptedSize(uint64(o.Size))
if err != nil {
err = errObjectTampered // assign correct error type
}
return int64(size), err
}
var size int64
for _, part := range o.Parts {
partSize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return -1, errObjectTampered
}
size += int64(partSize)
}
return size, nil
}
// DecryptETag decrypts the ETag that is part of given object
// with the given object encryption key.
//
// However, DecryptETag does not try to decrypt the ETag if
// it consists of a 128 bit hex value (32 hex chars) and exactly
// one '-' followed by a 32-bit number.
// This special case addresses randomly-generated ETags generated
// by the MinIO server when running in non-compat mode. These
// random ETags are not encrypt.
//
// Calling DecryptETag with a non-randomly generated ETag will
// fail.
func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) {
if n := strings.Count(object.ETag, "-"); n > 0 {
if n != 1 {
return "", errObjectTampered
}
i := strings.IndexByte(object.ETag, '-')
if len(object.ETag[:i]) != 32 {
return "", errObjectTampered
}
if _, err := hex.DecodeString(object.ETag[:32]); err != nil {
return "", errObjectTampered
}
if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil {
return "", errObjectTampered
}
return object.ETag, nil
}
etag, err := hex.DecodeString(object.ETag)
if err != nil {
return "", err
}
etag, err = key.UnsealETag(etag)
if err != nil {
return "", err
}
return hex.EncodeToString(etag), nil
}
// For encrypted objects, the ETag sent by client if available
// is stored in encrypted form in the backend. Decrypt the ETag
// if ETag was previously encrypted.
func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) {
var (
key [32]byte
err error
)
// If ETag is contentMD5Sum return it as is.
if len(objInfo.ETag) == 32 {
return objInfo.ETag
}
if crypto.IsMultiPart(objInfo.UserDefined) {
return objInfo.ETag
}
if crypto.SSECopy.IsRequested(headers) {
key, err = crypto.SSECopy.ParseHTTP(headers)
if err != nil {
return objInfo.ETag
}
}
// As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data.
// Since server side copy with same source and dest just replaces the ETag, we save
// encrypted content MD5Sum as ETag for both SSE-C and SSE-KMS, we standardize the ETag
// encryption across SSE-C and SSE-KMS, and only return last 32 bytes for SSE-C
if (crypto.SSEC.IsEncrypted(objInfo.UserDefined) || crypto.S3KMS.IsEncrypted(objInfo.UserDefined)) && !copySource {
return objInfo.ETag[len(objInfo.ETag)-32:]
}
objectEncryptionKey, err := decryptObjectMeta(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined)
if err != nil {
return objInfo.ETag
}
return tryDecryptETag(objectEncryptionKey, objInfo.ETag, true)
}
// helper to decrypt Etag given object encryption key and encrypted ETag
func tryDecryptETag(key []byte, encryptedETag string, sses3 bool) string {
// ETag for SSE-C or SSE-KMS encrypted objects need not be content MD5Sum.While encrypted
// md5sum is stored internally, return just the last 32 bytes of hex-encoded and
// encrypted md5sum string for SSE-C
if !sses3 {
return encryptedETag[len(encryptedETag)-32:]
}
var objectKey crypto.ObjectKey
copy(objectKey[:], key)
encBytes, err := hex.DecodeString(encryptedETag)
if err != nil {
return encryptedETag
}
etagBytes, err := objectKey.UnsealETag(encBytes)
if err != nil {
return encryptedETag
}
return hex.EncodeToString(etagBytes)
}
// GetDecryptedRange - To decrypt the range (off, length) of the
// decrypted object stream, we need to read the range (encOff,
// encLength) of the encrypted object stream to decrypt it, and
// compute skipLen, the number of bytes to skip in the beginning of
// the encrypted range.
//
// In addition we also compute the object part number for where the
// requested range starts, along with the DARE sequence number within
// that part. For single part objects, the partStart will be 0.
func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) {
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
err = errors.New("Object is not encrypted")
return
}
if rs == nil {
// No range, so offsets refer to the whole object.
return 0, o.Size, 0, 0, 0, nil
}
// Assemble slice of (decrypted) part sizes in `sizes`
var sizes []int64
var decObjSize int64 // decrypted total object size
if o.isMultipart() {
sizes = make([]int64, len(o.Parts))
for i, part := range o.Parts {
var partSize uint64
partSize, err = sio.DecryptedSize(uint64(part.Size))
if err != nil {
err = errObjectTampered
return
}
sizes[i] = int64(partSize)
decObjSize += int64(partSize)
}
} else {
var partSize uint64
partSize, err = sio.DecryptedSize(uint64(o.Size))
if err != nil {
err = errObjectTampered
return
}
sizes = []int64{int64(partSize)}
decObjSize = sizes[0]
}
var off, length int64
off, length, err = rs.GetOffsetLength(decObjSize)
if err != nil {
return
}
// At this point, we have:
//
// 1. the decrypted part sizes in `sizes` (single element for
// single part object) and total decrypted object size `decObjSize`
//
// 2. the (decrypted) start offset `off` and (decrypted)
// length to read `length`
//
// These are the inputs to the rest of the algorithm below.
// Locate the part containing the start of the required range
var partEnd int
var cumulativeSum, encCumulativeSum int64
for i, size := range sizes {
if off < cumulativeSum+size {
partStart = i
break
}
cumulativeSum += size
encPartSize, _ := sio.EncryptedSize(uint64(size))
encCumulativeSum += int64(encPartSize)
}
// partStart is always found in the loop above,
// because off is validated.
sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize
// Now we can calculate the number of bytes to skip
skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize
encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize
// Locate the part containing the end of the required range
endOffset := off + length - 1
for i1, size := range sizes[partStart:] {
i := partStart + i1
if endOffset < cumulativeSum+size {
partEnd = i
break
}
cumulativeSum += size
encPartSize, _ := sio.EncryptedSize(uint64(size))
encCumulativeSum += int64(encPartSize)
}
// partEnd is always found in the loop above, because off and
// length are validated.
endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize
// Compute endEncOffset with one additional DARE package (so
// we read the package containing the last desired byte).
endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize
// Check if the DARE package containing the end offset is a
// full sized package (as the last package in the part may be
// smaller)
lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd]))
if endEncOffset > encCumulativeSum+int64(lastPartSize) {
endEncOffset = encCumulativeSum + int64(lastPartSize)
}
encLength = endEncOffset - encOff
// Set the sequence number as the starting package number of
// the requested block
seqNumber = uint32(startPkgNum)
return encOff, encLength, skipLen, seqNumber, partStart, nil
}
// EncryptedSize returns the size of the object after encryption.
// An encrypted object is always larger than a plain object
// except for zero size objects.
func (o *ObjectInfo) EncryptedSize() int64 {
size, err := sio.EncryptedSize(uint64(o.Size))
if err != nil {
// This cannot happen since AWS S3 allows parts to be 5GB at most
// sio max. size is 256 TB
reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
ctx := logger.SetReqInfo(GlobalContext, reqInfo)
logger.CriticalIf(ctx, err)
}
return int64(size)
}
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
// It fails if the object is encrypted and the HTTP headers don't contain
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
// decryption succeeded.
//
// DecryptObjectInfo also returns whether the object is encrypted or not.
func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) {
// Directories are never encrypted.
if info.IsDir {
return false, nil
}
if r == nil {
return false, errInvalidArgument
}
headers := r.Header
// disallow X-Amz-Server-Side-Encryption header on HEAD and GET
switch r.Method {
case http.MethodGet, http.MethodHead:
if crypto.S3.IsRequested(headers) || crypto.S3KMS.IsRequested(headers) {
return false, errInvalidEncryptionParameters
}
}
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
_, encrypted = crypto.IsEncrypted(info.UserDefined)
if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" {
return false, errInvalidEncryptionParameters
}
if encrypted {
if crypto.SSEC.IsEncrypted(info.UserDefined) {
if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) {
if r.Header.Get(xhttp.MinIOSourceReplicationRequest) != "true" {
return encrypted, errEncryptedObject
}
}
}
if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
return encrypted, errEncryptedObject
}
}
if crypto.S3KMS.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
return encrypted, errEncryptedObject
}
}
if _, err = info.DecryptedSize(); err != nil {
return encrypted, err
}
crypto: add support for decrypting SSE-KMS metadata (#11415) This commit refactors the SSE implementation and add S3-compatible SSE-KMS context handling. SSE-KMS differs from SSE-S3 in two main aspects: 1. The client can request a particular key and specify a KMS context as part of the request. 2. The ETag of an SSE-KMS encrypted object is not the MD5 sum of the object content. This commit only focuses on the 1st aspect. A client can send an optional SSE context when using SSE-KMS. This context is remembered by the S3 server such that the client does not have to specify the context again (during multipart PUT / GET / HEAD ...). The crypto. context also includes the bucket/object name to prevent renaming objects at the backend. Now, AWS S3 behaves as following: - If the user does not provide a SSE-KMS context it does not store one - resp. does not include the SSE-KMS context header in the response (e.g. HEAD). - If the user specifies a SSE-KMS context without the bucket/object name then AWS stores the exact context the client provided but adds the bucket/object name internally. The response contains the KMS context without the bucket/object name. - If the user specifies a SSE-KMS context with the bucket/object name then AWS again stores the exact context provided by the client. The response contains the KMS context with the bucket/object name. This commit implements this behavior w.r.t. SSE-KMS. However, as of now, no such object can be created since the server rejects SSE-KMS encryption requests. This commit is one stepping stone for SSE-KMS support. Co-authored-by: Harshavardhana <harsha@minio.io>
2021-02-03 18:19:08 -05:00
if _, ok := crypto.IsEncrypted(info.UserDefined); ok && !crypto.IsMultiPart(info.UserDefined) {
info.ETag = getDecryptedETag(headers, *info, false)
}
}
return encrypted, nil
}
type (
objectMetaEncryptFn func(baseKey string, data []byte) []byte
objectMetaDecryptFn func(baseKey string, data []byte) ([]byte, error)
)
// metadataEncrypter returns a function that will read data from input,
// encrypt it using the provided key and return the result.
// 0 sized inputs are passed through.
func metadataEncrypter(key crypto.ObjectKey) objectMetaEncryptFn {
return func(baseKey string, data []byte) []byte {
if len(data) == 0 {
return data
}
var buffer bytes.Buffer
mac := hmac.New(sha256.New, key[:])
mac.Write([]byte(baseKey))
if _, err := sio.Encrypt(&buffer, bytes.NewReader(data), sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()}); err != nil {
logger.CriticalIf(context.Background(), errors.New("unable to encrypt using object key"))
}
return buffer.Bytes()
}
}
// metadataDecrypter reverses metadataEncrypter.
func (o *ObjectInfo) metadataDecrypter(h http.Header) objectMetaDecryptFn {
return func(baseKey string, input []byte) ([]byte, error) {
if len(input) == 0 {
return input, nil
}
var key []byte
if k, err := crypto.SSEC.ParseHTTP(h); err == nil {
key = k[:]
}
key, err := decryptObjectMeta(key, o.Bucket, o.Name, o.UserDefined)
if err != nil {
return nil, err
}
mac := hmac.New(sha256.New, key)
mac.Write([]byte(baseKey))
return sio.DecryptBuffer(nil, input, sio.Config{Key: mac.Sum(nil), CipherSuites: fips.DARECiphers()})
}
}
// decryptPartsChecksums will attempt to decode checksums and return it/them if set.
// if part > 0, and we have the checksum for the part that will be returned.
func (o *ObjectInfo) decryptPartsChecksums(h http.Header) {
data := o.Checksum
if len(data) == 0 {
return
}
if _, encrypted := crypto.IsEncrypted(o.UserDefined); encrypted {
decrypted, err := o.metadataDecrypter(h)("object-checksum", data)
if err != nil {
encLogIf(GlobalContext, err)
return
}
data = decrypted
}
cs := hash.ReadPartCheckSums(data)
if len(cs) == len(o.Parts) {
for i := range o.Parts {
o.Parts[i].Checksums = cs[i]
}
}
return
}
// metadataEncryptFn provides an encryption function for metadata.
// Will return nil, nil if unencrypted.
func (o *ObjectInfo) metadataEncryptFn(headers http.Header) (objectMetaEncryptFn, error) {
kind, _ := crypto.IsEncrypted(o.UserDefined)
switch kind {
case crypto.SSEC:
if crypto.SSECopy.IsRequested(headers) {
key, err := crypto.SSECopy.ParseHTTP(headers)
if err != nil {
return nil, err
}
objectEncryptionKey, err := decryptObjectMeta(key[:], o.Bucket, o.Name, o.UserDefined)
if err != nil {
return nil, err
}
if len(objectEncryptionKey) == 32 {
var key crypto.ObjectKey
copy(key[:], objectEncryptionKey)
return metadataEncrypter(key), nil
}
return nil, errors.New("metadataEncryptFn: unexpected key size")
}
case crypto.S3, crypto.S3KMS:
objectEncryptionKey, err := decryptObjectMeta(nil, o.Bucket, o.Name, o.UserDefined)
if err != nil {
return nil, err
}
if len(objectEncryptionKey) == 32 {
var key crypto.ObjectKey
copy(key[:], objectEncryptionKey)
return metadataEncrypter(key), nil
}
return nil, errors.New("metadataEncryptFn: unexpected key size")
}
return nil, nil
}
// decryptChecksums will attempt to decode checksums and return it/them if set.
// if part > 0, and we have the checksum for the part that will be returned.
func (o *ObjectInfo) decryptChecksums(part int, h http.Header) map[string]string {
data := o.Checksum
if len(data) == 0 {
return nil
}
if part > 0 && !crypto.SSEC.IsEncrypted(o.UserDefined) {
// already decrypted in ToObjectInfo for multipart objects
for _, pi := range o.Parts {
if pi.Number == part {
return pi.Checksums
}
}
}
if _, encrypted := crypto.IsEncrypted(o.UserDefined); encrypted {
decrypted, err := o.metadataDecrypter(h)("object-checksum", data)
if err != nil {
if err != crypto.ErrSecretKeyMismatch {
encLogIf(GlobalContext, err)
}
return nil
}
data = decrypted
}
return hash.ReadCheckSums(data, part)
}