minio/cmd/encryption-v1.go

924 lines
33 KiB
Go
Raw Permalink Normal View History

/*
* Minio Cloud Storage, (C) 2017, 2018 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"bytes"
"context"
"crypto/hmac"
"crypto/md5"
"crypto/rand"
"crypto/subtle"
"encoding/base64"
"encoding/binary"
"errors"
"io"
"net/http"
"path"
"strconv"
"github.com/minio/minio/cmd/logger"
"github.com/minio/minio/pkg/ioutil"
sha256 "github.com/minio/sha256-simd"
"github.com/minio/sio"
)
var (
// AWS errors for invalid SSE-C requests.
errInsecureSSERequest = errors.New("SSE-C requests require TLS connections")
errEncryptedObject = errors.New("The object was stored using a form of SSE")
errInvalidSSEAlgorithm = errors.New("The SSE-C algorithm is not valid")
errMissingSSEKey = errors.New("The SSE-C request is missing the customer key")
errInvalidSSEKey = errors.New("The SSE-C key is invalid")
errMissingSSEKeyMD5 = errors.New("The SSE-C request is missing the customer key MD5")
errSSEKeyMD5Mismatch = errors.New("The key MD5 does not match the SSE-C key")
errSSEKeyMismatch = errors.New("The SSE-C key is not correct") // access denied
errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
// Additional Minio errors for SSE-C requests.
errObjectTampered = errors.New("The requested object was modified and may be compromised")
)
const (
// SSECustomerAlgorithm is the AWS SSE-C algorithm HTTP header key.
SSECustomerAlgorithm = "X-Amz-Server-Side-Encryption-Customer-Algorithm"
// SSECustomerKey is the AWS SSE-C encryption key HTTP header key.
SSECustomerKey = "X-Amz-Server-Side-Encryption-Customer-Key"
// SSECustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key.
SSECustomerKeyMD5 = "X-Amz-Server-Side-Encryption-Customer-Key-MD5"
// SSECopyCustomerAlgorithm is the AWS SSE-C algorithm HTTP header key for CopyObject API.
SSECopyCustomerAlgorithm = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Algorithm"
// SSECopyCustomerKey is the AWS SSE-C encryption key HTTP header key for CopyObject API.
SSECopyCustomerKey = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key"
// SSECopyCustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key for CopyObject API.
SSECopyCustomerKeyMD5 = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key-MD5"
)
const (
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
SSECustomerKeySize = 32
// SSEIVSize is the size of the IV data
SSEIVSize = 32 // 32 bytes
// SSECustomerAlgorithmAES256 the only valid S3 SSE-C encryption algorithm identifier.
SSECustomerAlgorithmAES256 = "AES256"
// SSE dare package block size.
sseDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
// SSE dare package meta padding bytes.
sseDAREPackageMetaSize = 32 // 32 bytes
)
// SSE-C key derivation, key verification and key update:
// H: Hash function [32 = |H(m)|]
// AE: authenticated encryption scheme, AD: authenticated decryption scheme [m = AD(k, AE(k, m))]
//
// Key derivation:
// Input:
// key := 32 bytes # client provided key
// Re, Rm := 32 bytes, 32 bytes # uniformly random
//
// Seal:
// k := H(key || Re) # object encryption key
// r := H(Rm) # save as object metadata [ServerSideEncryptionIV]
// KeK := H(key || r) # key encryption key
// K := AE(KeK, k) # save as object metadata [ServerSideEncryptionSealedKey]
// ------------------------------------------------------------------------------------------------
// Key verification:
// Input:
// key := 32 bytes # client provided key
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
//
// Open:
// KeK := H(key || r) # key encryption key
// k := AD(Kek, K) # object encryption key
// -------------------------------------------------------------------------------------------------
// Key update:
// Input:
// key := 32 bytes # old client provided key
// key' := 32 bytes # new client provided key
// Rm := 32 bytes # uniformly random
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
//
// Update:
// 1. open:
// KeK := H(key || r) # key encryption key
// k := AD(Kek, K) # object encryption key
// 2. seal:
// r' := H(Rm) # save as object metadata [ServerSideEncryptionIV]
// KeK' := H(key' || r') # new key encryption key
// K' := AE(KeK', k) # save as object metadata [ServerSideEncryptionSealedKey]
const (
// ServerSideEncryptionIV is a 32 byte randomly generated IV used to derive an
// unique key encryption key from the client provided key. The combination of this value
// and the client-provided key MUST be unique.
ServerSideEncryptionIV = ReservedMetadataPrefix + "Server-Side-Encryption-Iv"
// ServerSideEncryptionSealAlgorithm identifies a combination of a cryptographic hash function and
// an authenticated en/decryption scheme to seal the object encryption key.
ServerSideEncryptionSealAlgorithm = ReservedMetadataPrefix + "Server-Side-Encryption-Seal-Algorithm"
// ServerSideEncryptionSealedKey is the sealed object encryption key. The sealed key can be decrypted
// by the key encryption key derived from the client provided key and the server-side-encryption IV.
ServerSideEncryptionSealedKey = ReservedMetadataPrefix + "Server-Side-Encryption-Sealed-Key"
)
const (
// SSESealAlgorithmDareSha256 specifies DARE as authenticated en/decryption scheme and SHA256 as cryptographic
// hash function. The key derivation of DARE-SHA256 is not optimal and does not include the object path.
// It is considered legacy and should not be used anymore.
SSESealAlgorithmDareSha256 = "DARE-SHA256"
// SSESealAlgorithmDareV2HmacSha256 specifies DAREv2 as authenticated en/decryption scheme and SHA256 as cryptographic
// hash function for the HMAC PRF.
SSESealAlgorithmDareV2HmacSha256 = "DAREv2-HMAC-SHA256"
// SSEDomain specifies the domain for the derived key - in this case the
// key should be used for SSE-C.
SSEDomain = "SSE-C"
)
// hasSSECustomerHeader returns true if the given HTTP header
// contains server-side-encryption with customer provided key fields.
func hasSSECustomerHeader(header http.Header) bool {
return header.Get(SSECustomerAlgorithm) != "" || header.Get(SSECustomerKey) != "" || header.Get(SSECustomerKeyMD5) != ""
}
// hasSSECopyCustomerHeader returns true if the given HTTP header
// contains copy source server-side-encryption with customer provided key fields.
func hasSSECopyCustomerHeader(header http.Header) bool {
return header.Get(SSECopyCustomerAlgorithm) != "" || header.Get(SSECopyCustomerKey) != "" || header.Get(SSECopyCustomerKeyMD5) != ""
}
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECopyCustomerRequest(r *http.Request) (key []byte, err error) {
if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time
// we cannot use r.TLS == nil here because Go's http implementation reflects on
// the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn.
// Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package
// will always fail -> r.TLS is always nil even for TLS requests.
return nil, errInsecureSSERequest
}
header := r.Header
if algorithm := header.Get(SSECopyCustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 {
return nil, errInvalidSSEAlgorithm
}
if header.Get(SSECopyCustomerKey) == "" {
return nil, errMissingSSEKey
}
if header.Get(SSECopyCustomerKeyMD5) == "" {
return nil, errMissingSSEKeyMD5
}
key, err = base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKey))
if err != nil {
return nil, errInvalidSSEKey
}
if len(key) != SSECustomerKeySize {
return nil, errInvalidSSEKey
}
// Make sure we purged the keys from http headers by now.
header.Del(SSECopyCustomerKey)
keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKeyMD5))
if err != nil {
return nil, errSSEKeyMD5Mismatch
}
if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) {
return nil, errSSEKeyMD5Mismatch
}
return key, nil
}
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
return ParseSSECustomerHeader(r.Header)
}
// ParseSSECustomerHeader parses the SSE-C header fields and returns
// the client provided key on success.
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time
// we cannot use r.TLS == nil here because Go's http implementation reflects on
// the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn.
// Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package
// will always fail -> r.TLS is always nil even for TLS requests.
return nil, errInsecureSSERequest
}
if algorithm := header.Get(SSECustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 {
return nil, errInvalidSSEAlgorithm
}
if header.Get(SSECustomerKey) == "" {
return nil, errMissingSSEKey
}
if header.Get(SSECustomerKeyMD5) == "" {
return nil, errMissingSSEKeyMD5
}
key, err = base64.StdEncoding.DecodeString(header.Get(SSECustomerKey))
if err != nil {
return nil, errInvalidSSEKey
}
if len(key) != SSECustomerKeySize {
return nil, errInvalidSSEKey
}
// Make sure we purged the keys from http headers by now.
header.Del(SSECustomerKey)
keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECustomerKeyMD5))
if err != nil {
return nil, errSSEKeyMD5Mismatch
}
if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) {
return nil, errSSEKeyMD5Mismatch
}
return key, nil
}
// This function rotates old to new key.
func rotateKey(oldKey []byte, newKey []byte, bucket, object string, metadata map[string]string) error {
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
algorithm := metadata[ServerSideEncryptionSealAlgorithm]
if algorithm != SSESealAlgorithmDareSha256 && algorithm != SSESealAlgorithmDareV2HmacSha256 {
return errObjectTampered
}
iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV])
if err != nil || len(iv) != SSEIVSize {
return errObjectTampered
}
sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey])
if err != nil || len(sealedKey) != 64 {
return errObjectTampered
}
var (
minDAREVersion byte
keyEncryptionKey [32]byte
)
switch algorithm {
default:
return errObjectTampered
case SSESealAlgorithmDareSha256: // legacy key-encryption-key derivation
minDAREVersion = sio.Version10
sha := sha256.New()
sha.Write(oldKey)
sha.Write(iv)
sha.Sum(keyEncryptionKey[:0])
case SSESealAlgorithmDareV2HmacSha256: // key-encryption-key derivation - See: crypto/doc.go
minDAREVersion = sio.Version20
mac := hmac.New(sha256.New, oldKey)
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
}
objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key
n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{
MinVersion: minDAREVersion,
Key: keyEncryptionKey[:],
})
if n != 32 || err != nil { // Either the provided key does not match or the object was tampered.
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
}
return errSSEKeyMismatch // To provide strict AWS S3 compatibility we return: access denied.
}
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && algorithm != SSESealAlgorithmDareSha256 {
return nil // we don't need to rotate keys if newKey == oldKey but we may have to upgrade KDF algorithm
}
mac := hmac.New(sha256.New, newKey) // key-encryption-key derivation - See: crypto/doc.go
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
sealedKeyW := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag
n, err = sio.Encrypt(sealedKeyW, bytes.NewReader(objectEncryptionKey.Bytes()), sio.Config{
Key: keyEncryptionKey[:],
})
if n != 64 || err != nil {
return errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?)
}
metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:])
metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareV2HmacSha256
metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKeyW.Bytes())
return nil
}
func newEncryptMetadata(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
// See crypto/doc.go for detailed description
nonce := make([]byte, 32+SSEIVSize) // generate random values for key derivation
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
return nil, err
}
sha := sha256.New() // derive object encryption key
sha.Write(key)
sha.Write(nonce[:32])
objectEncryptionKey := sha.Sum(nil)
iv := sha256.Sum256(nonce[32:]) // key-encryption-key derivation - See: crypto/doc.go
mac := hmac.New(sha256.New, key)
mac.Write(iv[:])
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
keyEncryptionKey := mac.Sum(nil)
sealedKey := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag
n, err := sio.Encrypt(sealedKey, bytes.NewReader(objectEncryptionKey), sio.Config{
Key: keyEncryptionKey,
})
if n != 64 || err != nil {
return nil, errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?)
}
metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:])
metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareV2HmacSha256
metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Bytes())
return objectEncryptionKey, nil
}
func newEncryptReader(content io.Reader, key []byte, bucket, object string, metadata map[string]string) (io.Reader, error) {
objectEncryptionKey, err := newEncryptMetadata(key, bucket, object, metadata)
if err != nil {
return nil, err
}
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey})
if err != nil {
return nil, errInvalidSSEKey
}
return reader, nil
}
// EncryptRequest takes the client provided content and encrypts the data
// with the client provided key. It also marks the object as client-side-encrypted
// and sets the correct headers.
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, error) {
key, err := ParseSSECustomerRequest(r)
if err != nil {
return nil, err
}
return newEncryptReader(content, key, bucket, object, metadata)
}
// DecryptCopyRequest decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptCopyRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) {
key, err := ParseSSECopyCustomerRequest(r)
if err != nil {
return nil, err
}
delete(metadata, SSECopyCustomerKey) // make sure we do not save the key by accident
return newDecryptWriter(client, key, bucket, object, 0, metadata)
}
func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV])
if err != nil || len(iv) != SSEIVSize {
return nil, errObjectTampered
}
sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey])
if err != nil || len(sealedKey) != 64 {
return nil, errObjectTampered
}
var (
minDAREVersion byte
keyEncryptionKey [32]byte
)
switch algorithm := metadata[ServerSideEncryptionSealAlgorithm]; algorithm {
default:
return nil, errObjectTampered
case SSESealAlgorithmDareSha256: // legacy key-encryption-key derivation
minDAREVersion = sio.Version10
sha := sha256.New()
sha.Write(key)
sha.Write(iv)
sha.Sum(keyEncryptionKey[:0])
case SSESealAlgorithmDareV2HmacSha256: // key-encryption-key derivation - See: crypto/doc.go
minDAREVersion = sio.Version20
mac := hmac.New(sha256.New, key)
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
}
objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key
n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{
MinVersion: minDAREVersion,
Key: keyEncryptionKey[:],
})
if n != 32 || err != nil {
// Either the provided key does not match or the object was tampered.
// To provide strict AWS S3 compatibility we return: access denied.
return nil, errSSEKeyMismatch
}
return objectEncryptionKey.Bytes(), nil
}
func newDecryptWriter(client io.Writer, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata)
if err != nil {
return nil, err
}
return newDecryptWriterWithObjectKey(client, objectEncryptionKey, seqNumber, metadata)
}
func newDecryptWriterWithObjectKey(client io.Writer, objectEncryptionKey []byte, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
writer, err := sio.DecryptWriter(client, sio.Config{
Key: objectEncryptionKey,
SequenceNumber: seqNumber,
})
if err != nil {
return nil, errInvalidSSEKey
}
delete(metadata, ServerSideEncryptionIV)
delete(metadata, ServerSideEncryptionSealAlgorithm)
delete(metadata, ServerSideEncryptionSealedKey)
delete(metadata, ReservedMetadataPrefix+"Encrypted-Multipart")
return writer, nil
}
// DecryptRequestWithSequenceNumber decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptRequestWithSequenceNumber(client io.Writer, r *http.Request, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
key, err := ParseSSECustomerRequest(r)
if err != nil {
return nil, err
}
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
return newDecryptWriter(client, key, bucket, object, seqNumber, metadata)
}
// DecryptRequest decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) {
return DecryptRequestWithSequenceNumber(client, r, bucket, object, 0, metadata)
}
// DecryptBlocksWriter - decrypts multipart parts, while implementing a io.Writer compatible interface.
type DecryptBlocksWriter struct {
// Original writer where the plain data will be written
writer io.Writer
// Current decrypter for the current encrypted data block
decrypter io.WriteCloser
// Start sequence number
startSeqNum uint32
// Current part index
partIndex int
// Parts information
parts []objectPartInfo
req *http.Request
bucket, object string
metadata map[string]string
partEncRelOffset int64
copySource bool
// Customer Key
customerKeyHeader string
}
func (w *DecryptBlocksWriter) buildDecrypter(partID int) error {
m := make(map[string]string)
for k, v := range w.metadata {
m[k] = v
}
// Initialize the first decrypter, new decrypters will be initialized in Write() operation as needed.
var key []byte
var err error
if w.copySource {
w.req.Header.Set(SSECopyCustomerKey, w.customerKeyHeader)
key, err = ParseSSECopyCustomerRequest(w.req)
} else {
w.req.Header.Set(SSECustomerKey, w.customerKeyHeader)
key, err = ParseSSECustomerRequest(w.req)
}
if err != nil {
return err
}
objectEncryptionKey, err := decryptObjectInfo(key, w.bucket, w.object, m)
if err != nil {
return err
}
var partIDbin [4]byte
binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
mac.Write(partIDbin[:])
partEncryptionKey := mac.Sum(nil)
// make sure we do not save the key by accident
if w.copySource {
delete(m, SSECopyCustomerKey)
} else {
delete(m, SSECustomerKey)
}
// make sure to provide a NopCloser such that a Close
// on sio.decryptWriter doesn't close the underlying writer's
// close which perhaps can close the stream prematurely.
decrypter, err := newDecryptWriterWithObjectKey(ioutil.NopCloser(w.writer), partEncryptionKey, w.startSeqNum, m)
if err != nil {
return err
}
if w.decrypter != nil {
// Pro-actively close the writer such that any pending buffers
// are flushed already before we allocate a new decrypter.
err = w.decrypter.Close()
if err != nil {
return err
}
}
w.decrypter = decrypter
return nil
}
func (w *DecryptBlocksWriter) Write(p []byte) (int, error) {
var err error
var n1 int
if int64(len(p)) < w.parts[w.partIndex].Size-w.partEncRelOffset {
n1, err = w.decrypter.Write(p)
if err != nil {
return 0, err
}
w.partEncRelOffset += int64(n1)
} else {
n1, err = w.decrypter.Write(p[:w.parts[w.partIndex].Size-w.partEncRelOffset])
if err != nil {
return 0, err
}
// We should now proceed to next part, reset all values appropriately.
w.partEncRelOffset = 0
w.startSeqNum = 0
w.partIndex++
err = w.buildDecrypter(w.partIndex + 1)
if err != nil {
return 0, err
}
n1, err = w.decrypter.Write(p[n1:])
if err != nil {
return 0, err
}
w.partEncRelOffset += int64(n1)
}
return len(p), nil
}
// Close closes the LimitWriter. It behaves like io.Closer.
func (w *DecryptBlocksWriter) Close() error {
if w.decrypter != nil {
err := w.decrypter.Close()
if err != nil {
return err
}
}
if closer, ok := w.writer.(io.Closer); ok {
return closer.Close()
}
return nil
}
// DecryptAllBlocksCopyRequest - setup a struct which can decrypt many concatenated encrypted data
// parts information helps to know the boundaries of each encrypted data block, this function decrypts
// all parts starting from part-1.
func DecryptAllBlocksCopyRequest(client io.Writer, r *http.Request, bucket, object string, objInfo ObjectInfo) (io.WriteCloser, int64, error) {
w, _, size, err := DecryptBlocksRequest(client, r, bucket, object, 0, objInfo.Size, objInfo, true)
return w, size, err
}
// DecryptBlocksRequest - setup a struct which can decrypt many concatenated encrypted data
// parts information helps to know the boundaries of each encrypted data block.
func DecryptBlocksRequest(client io.Writer, r *http.Request, bucket, object string, startOffset, length int64, objInfo ObjectInfo, copySource bool) (io.WriteCloser, int64, int64, error) {
var seqNumber uint32
var encStartOffset, encLength int64
if len(objInfo.Parts) == 0 || !objInfo.IsEncryptedMultipart() {
seqNumber, encStartOffset, encLength = getEncryptedSinglePartOffsetLength(startOffset, length, objInfo)
var writer io.WriteCloser
var err error
if copySource {
writer, err = DecryptCopyRequest(client, r, bucket, object, objInfo.UserDefined)
} else {
writer, err = DecryptRequestWithSequenceNumber(client, r, bucket, object, seqNumber, objInfo.UserDefined)
}
if err != nil {
return nil, 0, 0, err
}
return writer, encStartOffset, encLength, nil
}
seqNumber, encStartOffset, encLength = getEncryptedMultipartsOffsetLength(startOffset, length, objInfo)
var partStartIndex int
var partStartOffset = startOffset
// Skip parts until final offset maps to a particular part offset.
for i, part := range objInfo.Parts {
decryptedSize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return nil, -1, -1, errObjectTampered
}
partStartIndex = i
// Offset is smaller than size we have reached the
// proper part offset, break out we start from
// this part index.
if partStartOffset < int64(decryptedSize) {
break
}
// Continue to look for next part.
partStartOffset -= int64(decryptedSize)
}
startSeqNum := partStartOffset / sseDAREPackageBlockSize
partEncRelOffset := int64(startSeqNum) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize)
w := &DecryptBlocksWriter{
writer: client,
startSeqNum: uint32(startSeqNum),
partEncRelOffset: partEncRelOffset,
parts: objInfo.Parts,
partIndex: partStartIndex,
req: r,
bucket: bucket,
object: object,
customerKeyHeader: r.Header.Get(SSECustomerKey),
copySource: copySource,
}
w.metadata = map[string]string{}
// Copy encryption metadata for internal use.
for k, v := range objInfo.UserDefined {
w.metadata[k] = v
}
// Purge all the encryption headers.
delete(objInfo.UserDefined, ServerSideEncryptionIV)
delete(objInfo.UserDefined, ServerSideEncryptionSealAlgorithm)
delete(objInfo.UserDefined, ServerSideEncryptionSealedKey)
delete(objInfo.UserDefined, ReservedMetadataPrefix+"Encrypted-Multipart")
if w.copySource {
w.customerKeyHeader = r.Header.Get(SSECopyCustomerKey)
}
if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
return nil, 0, 0, err
}
return w, encStartOffset, encLength, nil
}
// getEncryptedMultipartsOffsetLength - fetch sequence number, encrypted start offset and encrypted length.
func getEncryptedMultipartsOffsetLength(offset, length int64, obj ObjectInfo) (uint32, int64, int64) {
// Calculate encrypted offset of a multipart object
computeEncOffset := func(off int64, obj ObjectInfo) (seqNumber uint32, encryptedOffset int64, err error) {
var curPartEndOffset uint64
var prevPartsEncSize int64
for _, p := range obj.Parts {
size, decErr := sio.DecryptedSize(uint64(p.Size))
if decErr != nil {
err = errObjectTampered // assign correct error type
return
}
if off < int64(curPartEndOffset+size) {
seqNumber, encryptedOffset, _ = getEncryptedSinglePartOffsetLength(off-int64(curPartEndOffset), 1, obj)
encryptedOffset += int64(prevPartsEncSize)
break
}
curPartEndOffset += size
prevPartsEncSize += p.Size
}
return
}
// Calculate the encrypted start offset corresponding to the plain offset
seqNumber, encStartOffset, _ := computeEncOffset(offset, obj)
// Calculate also the encrypted end offset corresponding to plain offset + plain length
_, encEndOffset, _ := computeEncOffset(offset+length-1, obj)
// encLength is the diff between encrypted end offset and encrypted start offset + one package size
// to ensure all encrypted data are covered
encLength := encEndOffset - encStartOffset + (64*1024 + 32)
// Calculate total size of all parts
var totalPartsLength int64
for _, p := range obj.Parts {
totalPartsLength += p.Size
}
// Set encLength to maximum possible value if it exceeded total parts size
if encLength+encStartOffset > totalPartsLength {
encLength = totalPartsLength - encStartOffset
}
return seqNumber, encStartOffset, encLength
}
// getEncryptedSinglePartOffsetLength - fetch sequence number, encrypted start offset and encrypted length.
func getEncryptedSinglePartOffsetLength(offset, length int64, objInfo ObjectInfo) (seqNumber uint32, encOffset int64, encLength int64) {
onePkgSize := int64(sseDAREPackageBlockSize + sseDAREPackageMetaSize)
seqNumber = uint32(offset / sseDAREPackageBlockSize)
encOffset = int64(seqNumber) * onePkgSize
// The math to compute the encrypted length is always
// originalLength i.e (offset+length-1) to be divided under
// 64KiB blocks which is the payload size for each encrypted
// block. This is then multiplied by final package size which
// is basically 64KiB + 32. Finally negate the encrypted offset
// to get the final encrypted length on disk.
encLength = ((offset+length)/sseDAREPackageBlockSize)*onePkgSize - encOffset
// Check for the remainder, to figure if we need one extract package to read from.
if (offset+length)%sseDAREPackageBlockSize > 0 {
encLength += onePkgSize
}
if encLength+encOffset > objInfo.EncryptedSize() {
encLength = objInfo.EncryptedSize() - encOffset
}
return seqNumber, encOffset, encLength
}
// IsEncryptedMultipart - is the encrypted content multiparted?
func (o *ObjectInfo) IsEncryptedMultipart() bool {
_, ok := o.UserDefined[ReservedMetadataPrefix+"Encrypted-Multipart"]
return ok
}
// IsEncrypted returns true if the object is marked as encrypted.
func (o *ObjectInfo) IsEncrypted() bool {
if _, ok := o.UserDefined[ServerSideEncryptionIV]; ok {
return true
}
if _, ok := o.UserDefined[ServerSideEncryptionSealAlgorithm]; ok {
return true
}
if _, ok := o.UserDefined[ServerSideEncryptionSealedKey]; ok {
return true
}
return false
}
// IsEncrypted returns true if the object is marked as encrypted.
func (li *ListPartsInfo) IsEncrypted() bool {
if _, ok := li.UserDefined[ServerSideEncryptionIV]; ok {
return true
}
if _, ok := li.UserDefined[ServerSideEncryptionSealAlgorithm]; ok {
return true
}
if _, ok := li.UserDefined[ServerSideEncryptionSealedKey]; ok {
return true
}
return false
}
// DecryptedSize returns the size of the object after decryption in bytes.
// It returns an error if the object is not encrypted or marked as encrypted
// but has an invalid size.
func (o *ObjectInfo) DecryptedSize() (int64, error) {
if !o.IsEncrypted() {
return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
}
if len(o.Parts) == 0 || !o.IsEncryptedMultipart() {
size, err := sio.DecryptedSize(uint64(o.Size))
if err != nil {
err = errObjectTampered // assign correct error type
}
return int64(size), err
}
var size int64
for _, part := range o.Parts {
partSize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return 0, errObjectTampered
}
size += int64(partSize)
}
return size, nil
}
// EncryptedSize returns the size of the object after encryption.
// An encrypted object is always larger than a plain object
// except for zero size objects.
func (o *ObjectInfo) EncryptedSize() int64 {
size, err := sio.EncryptedSize(uint64(o.Size))
if err != nil {
// This cannot happen since AWS S3 allows parts to be 5GB at most
// sio max. size is 256 TB
reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
ctx := logger.SetReqInfo(context.Background(), reqInfo)
logger.CriticalIf(ctx, err)
}
return int64(size)
}
// DecryptCopyObjectInfo tries to decrypt the provided object if it is encrypted.
// It fails if the object is encrypted and the HTTP headers don't contain
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
// decryption succeeded.
//
// DecryptCopyObjectInfo also returns whether the object is encrypted or not.
func DecryptCopyObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) {
// Directories are never encrypted.
if info.IsDir {
return ErrNone, false
}
if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && hasSSECopyCustomerHeader(headers) {
apiErr = ErrInvalidEncryptionParameters
} else if encrypted {
if !hasSSECopyCustomerHeader(headers) {
apiErr = ErrSSEEncryptedObject
return
}
var err error
if info.Size, err = info.DecryptedSize(); err != nil {
apiErr = toAPIErrorCode(err)
}
}
return
}
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
// It fails if the object is encrypted and the HTTP headers don't contain
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
// decryption succeeded.
//
// DecryptObjectInfo also returns whether the object is encrypted or not.
func DecryptObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) {
// Directories are never encrypted.
if info.IsDir {
return ErrNone, false
}
if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && hasSSECustomerHeader(headers) {
apiErr = ErrInvalidEncryptionParameters
} else if encrypted {
if !hasSSECustomerHeader(headers) {
apiErr = ErrSSEEncryptedObject
return
}
var err error
if info.Size, err = info.DecryptedSize(); err != nil {
apiErr = toAPIErrorCode(err)
}
}
return
}