minio/cmd/bucket-stats.go

434 lines
13 KiB
Go
Raw Normal View History

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cmd
import (
"fmt"
"math"
"sync/atomic"
"time"
"github.com/minio/madmin-go/v3"
)
//go:generate msgp -file $GOFILE
// ReplicationLatency holds information of bucket operations latency, such us uploads
type ReplicationLatency struct {
// Single & Multipart PUTs latency
2022-07-05 17:45:49 -04:00
UploadHistogram LastMinuteHistogram
}
// Merge two replication latency into a new one
func (rl ReplicationLatency) merge(other ReplicationLatency) (newReplLatency ReplicationLatency) {
newReplLatency.UploadHistogram = rl.UploadHistogram.Merge(other.UploadHistogram)
return
}
// Get upload latency of each object size range
func (rl ReplicationLatency) getUploadLatency() (ret map[string]uint64) {
ret = make(map[string]uint64)
avg := rl.UploadHistogram.GetAvgData()
for k, v := range avg {
// Convert nanoseconds to milliseconds
2022-07-05 17:45:49 -04:00
ret[sizeTagToString(k)] = uint64(v.avg() / time.Millisecond)
}
return
}
// Update replication upload latency with a new value
func (rl *ReplicationLatency) update(size int64, duration time.Duration) {
rl.UploadHistogram.Add(size, duration)
}
// ReplicationLastMinute has last minute replication counters
type ReplicationLastMinute struct {
LastMinute lastMinuteLatency
}
func (rl ReplicationLastMinute) merge(other ReplicationLastMinute) (nl ReplicationLastMinute) {
nl = ReplicationLastMinute{rl.LastMinute.merge(other.LastMinute)}
return
}
func (rl *ReplicationLastMinute) addsize(n int64) {
t := time.Now().Unix()
rl.LastMinute.addAll(t-1, AccElem{Total: t - 1, Size: n, N: 1})
}
func (rl *ReplicationLastMinute) String() string {
t := rl.LastMinute.getTotal()
return fmt.Sprintf("ReplicationLastMinute sz= %d, n=%d , dur=%d", t.Size, t.N, t.Total)
}
func (rl *ReplicationLastMinute) getTotal() AccElem {
return rl.LastMinute.getTotal()
}
// ReplicationLastHour keeps track of replication counts over the last hour
type ReplicationLastHour struct {
Totals [60]AccElem
LastMin int64
}
// Merge data of two ReplicationLastHour structure
func (l ReplicationLastHour) merge(o ReplicationLastHour) (merged ReplicationLastHour) {
if l.LastMin > o.LastMin {
o.forwardTo(l.LastMin)
merged.LastMin = l.LastMin
} else {
l.forwardTo(o.LastMin)
merged.LastMin = o.LastMin
}
for i := range merged.Totals {
merged.Totals[i] = AccElem{
Total: l.Totals[i].Total + o.Totals[i].Total,
N: l.Totals[i].N + o.Totals[i].N,
Size: l.Totals[i].Size + o.Totals[i].Size,
}
}
return merged
}
// Add a new duration data
func (l *ReplicationLastHour) addsize(sz int64) {
min := time.Now().Unix() / 60
l.forwardTo(min)
winIdx := min % 60
l.Totals[winIdx].merge(AccElem{Total: min, Size: sz, N: 1})
l.LastMin = min
}
// Merge all recorded counts of last hour into one
func (l *ReplicationLastHour) getTotal() AccElem {
var res AccElem
min := time.Now().Unix() / 60
l.forwardTo(min)
for _, elem := range l.Totals[:] {
res.merge(elem)
}
return res
}
// forwardTo time t, clearing any entries in between.
func (l *ReplicationLastHour) forwardTo(t int64) {
if l.LastMin >= t {
return
}
if t-l.LastMin >= 60 {
l.Totals = [60]AccElem{}
return
}
for l.LastMin != t {
// Clear next element.
idx := (l.LastMin + 1) % 60
l.Totals[idx] = AccElem{}
l.LastMin++
}
}
// BucketStatsMap captures bucket statistics for all buckets
type BucketStatsMap struct {
Stats map[string]BucketStats
Timestamp time.Time
}
// BucketStats bucket statistics
type BucketStats struct {
Uptime int64 `json:"uptime"`
ReplicationStats BucketReplicationStats `json:"currStats"` // current replication stats since cluster startup
QueueStats ReplicationQueueStats `json:"queueStats"` // replication queue stats
ProxyStats ProxyMetric `json:"proxyStats"`
}
// BucketReplicationStats represents inline replication statistics
// such as pending, failed and completed bytes in total for a bucket
type BucketReplicationStats struct {
Stats map[string]*BucketReplicationStat `json:",omitempty"`
// Completed size in bytes
ReplicatedSize int64 `json:"completedReplicationSize"`
// Total Replica size in bytes
ReplicaSize int64 `json:"replicaSize"`
// Total failed operations including metadata updates for various time frames
Failed madmin.TimedErrStats `json:"failed"`
// Total number of completed operations
ReplicatedCount int64 `json:"replicationCount"`
// Total number of replica received
ReplicaCount int64 `json:"replicaCount"`
// in Queue stats for bucket - from qCache
QStat InQueueMetric `json:"queued"`
// Deprecated fields
// Pending size in bytes
PendingSize int64 `json:"pendingReplicationSize"`
// Failed size in bytes
FailedSize int64 `json:"failedReplicationSize"`
// Total number of pending operations including metadata updates
PendingCount int64 `json:"pendingReplicationCount"`
// Total number of failed operations including metadata updates
FailedCount int64 `json:"failedReplicationCount"`
}
func newBucketReplicationStats() *BucketReplicationStats {
return &BucketReplicationStats{
Stats: make(map[string]*BucketReplicationStat),
}
}
// Empty returns true if there are no target stats
func (brs *BucketReplicationStats) Empty() bool {
return len(brs.Stats) == 0 && brs.ReplicaSize == 0
}
// Clone creates a new BucketReplicationStats copy
func (brs BucketReplicationStats) Clone() (c BucketReplicationStats) {
// This is called only by replicationStats cache and already holds a
// read lock before calling Clone()
c = brs
// We need to copy the map, so we do not reference the one in `brs`.
c.Stats = make(map[string]*BucketReplicationStat, len(brs.Stats))
for arn, st := range brs.Stats {
// make a copy of `*st`
s := BucketReplicationStat{
ReplicatedSize: st.ReplicatedSize,
ReplicaSize: st.ReplicaSize,
Latency: st.Latency,
BandWidthLimitInBytesPerSecond: st.BandWidthLimitInBytesPerSecond,
CurrentBandwidthInBytesPerSecond: st.CurrentBandwidthInBytesPerSecond,
XferRateLrg: st.XferRateLrg.Clone(),
XferRateSml: st.XferRateSml.Clone(),
ReplicatedCount: st.ReplicatedCount,
Failed: st.Failed,
FailStats: st.FailStats,
}
if s.Failed.ErrCounts == nil {
s.Failed.ErrCounts = make(map[string]int)
for k, v := range st.Failed.ErrCounts {
s.Failed.ErrCounts[k] = v
}
}
c.Stats[arn] = &s
}
return c
}
// BucketReplicationStat represents inline replication statistics
// such as pending, failed and completed bytes in total for a bucket
// remote target
type BucketReplicationStat struct {
// Pending size in bytes
// PendingSize int64 `json:"pendingReplicationSize"`
// Completed size in bytes
ReplicatedSize int64 `json:"completedReplicationSize"`
// Total Replica size in bytes
ReplicaSize int64 `json:"replicaSize"`
// Collect stats for failures
FailStats RTimedMetrics `json:"-"`
// Total number of failed operations including metadata updates in the last minute
Failed madmin.TimedErrStats `json:"failed"`
// Total number of completed operations
ReplicatedCount int64 `json:"replicationCount"`
// Replication latency information
Latency ReplicationLatency `json:"replicationLatency"`
// bandwidth limit for target
BandWidthLimitInBytesPerSecond int64 `json:"limitInBits"`
// current bandwidth reported
CurrentBandwidthInBytesPerSecond float64 `json:"currentBandwidth"`
// transfer rate for large uploads
XferRateLrg *XferStats `json:"-" msg:"lt"`
// transfer rate for small uploads
XferRateSml *XferStats `json:"-" msg:"st"`
// Deprecated fields
// Pending size in bytes
PendingSize int64 `json:"pendingReplicationSize"`
// Failed size in bytes
FailedSize int64 `json:"failedReplicationSize"`
// Total number of pending operations including metadata updates
PendingCount int64 `json:"pendingReplicationCount"`
// Total number of failed operations including metadata updates
FailedCount int64 `json:"failedReplicationCount"`
}
func (bs *BucketReplicationStat) hasReplicationUsage() bool {
return bs.FailStats.SinceUptime.Count > 0 ||
bs.ReplicatedSize > 0 ||
bs.ReplicaSize > 0
}
func (bs *BucketReplicationStat) updateXferRate(sz int64, duration time.Duration) {
if sz > minLargeObjSize {
bs.XferRateLrg.addSize(sz, duration)
} else {
bs.XferRateSml.addSize(sz, duration)
}
}
// RMetricName - name of replication metric
type RMetricName string
const (
// Large - objects larger than 128MiB
Large RMetricName = "Large"
// Small - objects smaller than 128MiB
Small RMetricName = "Small"
// Total - metric pertaining to totals
Total RMetricName = "Total"
)
// ReplQNodeStats holds queue stats for replication per node
type ReplQNodeStats struct {
NodeName string `json:"nodeName"`
Uptime int64 `json:"uptime"`
ActiveWorkers ActiveWorkerStat `json:"activeWorkers"`
XferStats map[RMetricName]XferStats `json:"transferSummary"`
TgtXferStats map[string]map[RMetricName]XferStats `json:"tgtTransferStats"`
QStats InQueueMetric `json:"queueStats"`
MRFStats ReplicationMRFStats `json:"mrfStats"`
}
// getNodeQueueStats returns replication operational stats at the node level
func (r *ReplicationStats) getNodeQueueStats(bucket string) (qs ReplQNodeStats) {
qs.NodeName = globalLocalNodeName
qs.Uptime = UTCNow().Unix() - globalBootTime.Unix()
grs := globalReplicationStats.Load()
if grs != nil {
qs.ActiveWorkers = grs.ActiveWorkers()
} else {
qs.ActiveWorkers = ActiveWorkerStat{}
}
qs.XferStats = make(map[RMetricName]XferStats)
qs.QStats = r.qCache.getBucketStats(bucket)
qs.TgtXferStats = make(map[string]map[RMetricName]XferStats)
qs.MRFStats = ReplicationMRFStats{
LastFailedCount: atomic.LoadUint64(&r.mrfStats.LastFailedCount),
}
r.RLock()
defer r.RUnlock()
brs, ok := r.Cache[bucket]
if !ok {
return qs
}
for arn := range brs.Stats {
qs.TgtXferStats[arn] = make(map[RMetricName]XferStats)
}
count := 0
var totPeak float64
// calculate large, small transfers and total transfer rates per replication target at bucket level
for arn, v := range brs.Stats {
lcurrTgt := v.XferRateLrg.curr()
scurrTgt := v.XferRateSml.curr()
totPeak = math.Max(math.Max(v.XferRateLrg.Peak, v.XferRateSml.Peak), totPeak)
totPeak = math.Max(math.Max(lcurrTgt, scurrTgt), totPeak)
tcount := 0
if v.XferRateLrg.Peak > 0 {
tcount++
}
if v.XferRateSml.Peak > 0 {
tcount++
}
qs.TgtXferStats[arn][Large] = XferStats{
Avg: v.XferRateLrg.Avg,
Curr: lcurrTgt,
Peak: math.Max(v.XferRateLrg.Peak, lcurrTgt),
}
qs.TgtXferStats[arn][Small] = XferStats{
Avg: v.XferRateSml.Avg,
Curr: scurrTgt,
Peak: math.Max(v.XferRateSml.Peak, scurrTgt),
}
if tcount > 0 {
qs.TgtXferStats[arn][Total] = XferStats{
Avg: (v.XferRateLrg.Avg + v.XferRateSml.Avg) / float64(tcount),
Curr: (scurrTgt + lcurrTgt) / float64(tcount),
Peak: totPeak,
}
}
}
// calculate large, small and total transfer rates for a minio node
var lavg, lcurr, lpeak, savg, scurr, speak, totpeak float64
for _, v := range qs.TgtXferStats {
tot := v[Total]
lavg += v[Large].Avg
lcurr += v[Large].Curr
savg += v[Small].Avg
scurr += v[Small].Curr
totpeak = math.Max(math.Max(tot.Peak, totpeak), tot.Curr)
lpeak = math.Max(math.Max(v[Large].Peak, lpeak), v[Large].Curr)
speak = math.Max(math.Max(v[Small].Peak, speak), v[Small].Curr)
if lpeak > 0 || speak > 0 {
count++
}
}
if count > 0 {
lrg := XferStats{
Avg: lavg / float64(count),
Curr: lcurr / float64(count),
Peak: lpeak,
}
sml := XferStats{
Avg: savg / float64(count),
Curr: scurr / float64(count),
Peak: speak,
}
qs.XferStats[Large] = lrg
qs.XferStats[Small] = sml
qs.XferStats[Total] = XferStats{
Avg: (savg + lavg) / float64(count),
Curr: (lcurr + scurr) / float64(count),
Peak: totpeak,
}
}
return qs
}
// populate queue totals for node and active workers in use for metrics
func (r *ReplicationStats) getNodeQueueStatsSummary() (qs ReplQNodeStats) {
qs.NodeName = globalLocalNodeName
qs.Uptime = UTCNow().Unix() - globalBootTime.Unix()
qs.ActiveWorkers = globalReplicationStats.Load().ActiveWorkers()
qs.XferStats = make(map[RMetricName]XferStats)
qs.QStats = r.qCache.getSiteStats()
qs.MRFStats = ReplicationMRFStats{
LastFailedCount: atomic.LoadUint64(&r.mrfStats.LastFailedCount),
}
r.RLock()
defer r.RUnlock()
tx := newXferStats()
for _, brs := range r.Cache {
for _, v := range brs.Stats {
tx := tx.merge(*v.XferRateLrg)
tx = tx.merge(*v.XferRateSml)
}
}
qs.XferStats[Total] = *tx
return qs
}
// ReplicationQueueStats holds overall queue stats for replication
type ReplicationQueueStats struct {
Nodes []ReplQNodeStats `json:"nodes"`
Uptime int64 `json:"uptime"`
}