minio/pkgs/erasure/encode.c

74 lines
2.3 KiB
C
Raw Normal View History

2014-11-27 19:43:54 -08:00
/*
* Mini Object Storage, (C) 2014 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include <erasure-code.h>
2014-11-29 14:58:40 -08:00
#include "common.h"
2014-11-27 19:43:54 -08:00
2014-11-29 14:58:40 -08:00
int32_t minio_init_encoder (int technique, int k, int m,
unsigned char **encode_matrix,
unsigned char **encode_tbls)
2014-11-27 19:43:54 -08:00
{
size_t encode_matrix_size;
size_t encode_tbls_size;
unsigned char *tmp_matrix, *tmp_tbls;
encode_matrix_size = k * (k + m);
encode_tbls_size = k * (k + m) * 32;
tmp_matrix = (unsigned char *) malloc (encode_matrix_size);
tmp_tbls = (unsigned char *) malloc (encode_tbls_size);
if (technique == 0) {
/*
Commonly used method for choosing coefficients in erasure
encoding but does not guarantee invertable for every sub
matrix. For large k it is possible to find cases where the
decode matrix chosen from sources and parity not in erasure
are not invertable. Users may want to adjust for k > 5.
-- Intel
*/
gf_gen_rs_matrix (tmp_matrix, k + m, k);
} else if (technique == 1) {
gf_gen_cauchy1_matrix (tmp_matrix, k + m, k);
}
ec_init_tables(k, m, &tmp_matrix[k * k], tmp_tbls);
*encode_matrix = tmp_matrix;
*encode_tbls = tmp_tbls;
2014-11-29 14:58:40 -08:00
return 0;
2014-11-27 19:43:54 -08:00
}
2014-11-29 14:58:40 -08:00
uint32_t minio_calc_chunk_size (int k, uint32_t split_len)
2014-11-27 19:43:54 -08:00
{
int alignment;
int remainder;
int padded_len;
alignment = k * SIMD_ALIGN;
remainder = split_len % alignment;
padded_len = split_len;
if (remainder) {
padded_len = split_len + (alignment - remainder);
}
return padded_len / k;
}