2021-04-18 15:41:13 -04:00
|
|
|
// Copyright (c) 2015-2021 MinIO, Inc.
|
|
|
|
//
|
|
|
|
// This file is part of MinIO Object Storage stack
|
|
|
|
//
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Affero General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This program is distributed in the hope that it will be useful
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Affero General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Affero General Public License
|
|
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
2016-02-10 19:40:09 -05:00
|
|
|
|
2017-03-19 17:23:05 -04:00
|
|
|
package words
|
2016-02-10 19:40:09 -05:00
|
|
|
|
2017-03-19 17:23:05 -04:00
|
|
|
import "math"
|
2016-02-10 19:40:09 -05:00
|
|
|
|
|
|
|
// Returns the minimum value of a slice of integers
|
|
|
|
func minimum(integers []int) (minVal int) {
|
|
|
|
minVal = math.MaxInt32
|
|
|
|
for _, v := range integers {
|
|
|
|
if v < minVal {
|
|
|
|
minVal = v
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// DamerauLevenshteinDistance calculates distance between two strings using an algorithm
|
|
|
|
// described in https://en.wikipedia.org/wiki/Damerau-Levenshtein_distance
|
|
|
|
func DamerauLevenshteinDistance(a string, b string) int {
|
2017-03-19 17:23:05 -04:00
|
|
|
var cost int
|
2016-02-10 19:40:09 -05:00
|
|
|
d := make([][]int, len(a)+1)
|
|
|
|
for i := 1; i <= len(a)+1; i++ {
|
|
|
|
d[i-1] = make([]int, len(b)+1)
|
|
|
|
}
|
|
|
|
for i := 0; i <= len(a); i++ {
|
|
|
|
d[i][0] = i
|
|
|
|
}
|
|
|
|
for j := 0; j <= len(b); j++ {
|
|
|
|
d[0][j] = j
|
|
|
|
}
|
|
|
|
for i := 1; i <= len(a); i++ {
|
|
|
|
for j := 1; j <= len(b); j++ {
|
|
|
|
if a[i-1] == b[j-1] {
|
|
|
|
cost = 0
|
|
|
|
} else {
|
|
|
|
cost = 1
|
|
|
|
}
|
|
|
|
d[i][j] = minimum([]int{
|
|
|
|
d[i-1][j] + 1,
|
|
|
|
d[i][j-1] + 1,
|
|
|
|
d[i-1][j-1] + cost,
|
|
|
|
})
|
|
|
|
if i > 1 && j > 1 && a[i-1] == b[j-2] && a[i-2] == b[j-1] {
|
|
|
|
d[i][j] = minimum([]int{d[i][j], d[i-2][j-2] + cost}) // transposition
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return d[len(a)][len(b)]
|
|
|
|
}
|