minio/internal/kms/secret-key.go

310 lines
8.3 KiB
Go
Raw Normal View History

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package kms
import (
"context"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"encoding/base64"
"encoding/json"
"errors"
"strconv"
"strings"
"sync/atomic"
"github.com/secure-io/sio-go/sioutil"
"golang.org/x/crypto/chacha20"
"golang.org/x/crypto/chacha20poly1305"
"github.com/minio/kms-go/kms"
"github.com/minio/madmin-go/v3"
"github.com/minio/minio/internal/hash/sha256"
)
// ParseSecretKey parses s as <key-id>:<base64> and returns a
// KMS that uses s as builtin single key as KMS implementation.
func ParseSecretKey(s string) (*KMS, error) {
v := strings.SplitN(s, ":", 2)
if len(v) != 2 {
return nil, errors.New("kms: invalid secret key format")
}
keyID, b64Key := v[0], v[1]
key, err := base64.StdEncoding.DecodeString(b64Key)
if err != nil {
return nil, err
}
return NewBuiltin(keyID, key)
}
// NewBuiltin returns a single-key KMS that derives new DEKs from the
// given key.
func NewBuiltin(keyID string, key []byte) (*KMS, error) {
if len(key) != 32 {
return nil, errors.New("kms: invalid key length " + strconv.Itoa(len(key)))
}
return &KMS{
Type: Builtin,
DefaultKey: keyID,
conn: secretKey{
keyID: keyID,
key: key,
},
latencyBuckets: defaultLatencyBuckets,
latency: make([]atomic.Uint64, len(defaultLatencyBuckets)),
}, nil
}
// secretKey is a KMS implementation that derives new DEKs
// from a single key.
type secretKey struct {
keyID string
key []byte
}
// Version returns the version of the builtin KMS.
func (secretKey) Version(ctx context.Context) (string, error) { return "v1", nil }
// APIs returns an error since the builtin KMS does not provide a list of APIs.
func (secretKey) APIs(ctx context.Context) ([]madmin.KMSAPI, error) {
return nil, ErrNotSupported
}
// Status returns a set of endpoints and their KMS status. Since, the builtin KMS is not
// external it returns "127.0.0.1: online".
func (secretKey) Status(context.Context) (map[string]madmin.ItemState, error) {
return map[string]madmin.ItemState{
"127.0.0.1": madmin.ItemOnline,
}, nil
}
// ListKeys returns a list of keys with metadata. The builtin KMS consists of just a single key.
func (s secretKey) ListKeys(ctx context.Context, req *ListRequest) ([]madmin.KMSKeyInfo, string, error) {
if strings.HasPrefix(s.keyID, req.Prefix) && strings.HasPrefix(s.keyID, req.ContinueAt) {
return []madmin.KMSKeyInfo{{Name: s.keyID}}, "", nil
}
return []madmin.KMSKeyInfo{}, "", nil
}
// CreateKey returns ErrKeyExists unless req.Name is equal to the secretKey name.
// The builtin KMS does not support creating multiple keys.
func (s secretKey) CreateKey(_ context.Context, req *CreateKeyRequest) error {
if req.Name != s.keyID {
return ErrNotSupported
}
return ErrKeyExists
}
// GenerateKey decrypts req.Ciphertext. The key name req.Name must match the key
// name of the secretKey.
//
// The returned DEK is encrypted using AES-GCM and the ciphertext format is compatible
// with KES and MinKMS.
func (s secretKey) GenerateKey(_ context.Context, req *GenerateKeyRequest) (DEK, error) {
if req.Name != s.keyID {
return DEK{}, ErrKeyNotFound
}
associatedData, err := req.AssociatedData.MarshalText()
if err != nil {
return DEK{}, err
}
const randSize = 28
random, err := sioutil.Random(randSize)
if err != nil {
return DEK{}, err
}
iv, nonce := random[:16], random[16:]
prf := hmac.New(sha256.New, s.key)
prf.Write(iv)
key := prf.Sum(make([]byte, 0, prf.Size()))
block, err := aes.NewCipher(key)
if err != nil {
return DEK{}, err
}
aead, err := cipher.NewGCM(block)
if err != nil {
return DEK{}, err
}
plaintext, err := sioutil.Random(32)
if err != nil {
return DEK{}, err
}
ciphertext := aead.Seal(nil, nonce, plaintext, associatedData)
ciphertext = append(ciphertext, random...)
return DEK{
KeyID: req.Name,
Version: 0,
Plaintext: plaintext,
Ciphertext: ciphertext,
}, nil
}
// Decrypt decrypts req.Ciphertext. The key name req.Name must match the key
// name of the secretKey.
//
// Decrypt supports decryption of binary-encoded ciphertexts, as produced by KES
// and MinKMS, and legacy JSON formatted ciphertexts.
func (s secretKey) Decrypt(_ context.Context, req *DecryptRequest) ([]byte, error) {
if req.Name != s.keyID {
return nil, ErrKeyNotFound
}
const randSize = 28
ciphertext, keyType := parseCiphertext(req.Ciphertext)
ciphertext, random := ciphertext[:len(ciphertext)-randSize], ciphertext[len(ciphertext)-randSize:]
iv, nonce := random[:16], random[16:]
var aead cipher.AEAD
switch keyType {
case kms.AES256:
mac := hmac.New(sha256.New, s.key)
mac.Write(iv)
sealingKey := mac.Sum(nil)
block, err := aes.NewCipher(sealingKey)
if err != nil {
return nil, err
}
aead, err = cipher.NewGCM(block)
if err != nil {
return nil, err
}
case kms.ChaCha20:
sealingKey, err := chacha20.HChaCha20(s.key, iv)
if err != nil {
return nil, err
}
aead, err = chacha20poly1305.New(sealingKey)
if err != nil {
return nil, err
}
default:
return nil, ErrDecrypt
}
associatedData, _ := req.AssociatedData.MarshalText()
plaintext, err := aead.Open(nil, nonce, ciphertext, associatedData)
if err != nil {
return nil, ErrDecrypt
}
return plaintext, nil
}
func (secretKey) MAC(context.Context, *MACRequest) ([]byte, error) {
return nil, ErrNotSupported
}
// parseCiphertext parses and converts a ciphertext into
// the format expected by a secretKey.
//
// Previous implementations of the secretKey produced a structured
// ciphertext. parseCiphertext converts all previously generated
// formats into the expected format.
func parseCiphertext(b []byte) ([]byte, kms.SecretKeyType) {
if len(b) == 0 {
return b, kms.AES256
}
if b[0] == '{' && b[len(b)-1] == '}' { // JSON object
var c ciphertext
if err := c.UnmarshalJSON(b); err != nil {
// It may happen that a random ciphertext starts with '{' and ends with '}'.
// In such a case, parsing will fail but we must not return an error. Instead
// we return the ciphertext as it is.
return b, kms.AES256
}
b = b[:0]
b = append(b, c.Bytes...)
b = append(b, c.IV...)
b = append(b, c.Nonce...)
return b, c.Algorithm
}
return b, kms.AES256
}
// ciphertext is a structure that contains the encrypted
// bytes and all relevant information to decrypt these
// bytes again with a cryptographic key.
type ciphertext struct {
Algorithm kms.SecretKeyType
ID string
IV []byte
Nonce []byte
Bytes []byte
}
// UnmarshalJSON parses the given text as JSON-encoded
// ciphertext.
//
// UnmarshalJSON provides backward-compatible unmarsahaling
// of existing ciphertext. In the past, ciphertexts were
// JSON-encoded. Now, ciphertexts are binary-encoded.
// Therefore, there is no MarshalJSON implementation.
func (c *ciphertext) UnmarshalJSON(text []byte) error {
const (
IVSize = 16
NonceSize = 12
AES256GCM = "AES-256-GCM-HMAC-SHA-256"
CHACHA20POLY1305 = "ChaCha20Poly1305"
)
type JSON struct {
Algorithm string `json:"aead"`
ID string `json:"id"`
IV []byte `json:"iv"`
Nonce []byte `json:"nonce"`
Bytes []byte `json:"bytes"`
}
var value JSON
if err := json.Unmarshal(text, &value); err != nil {
return ErrDecrypt
}
if value.Algorithm != AES256GCM && value.Algorithm != CHACHA20POLY1305 {
return ErrDecrypt
}
if len(value.IV) != IVSize {
return ErrDecrypt
}
if len(value.Nonce) != NonceSize {
return ErrDecrypt
}
switch value.Algorithm {
case AES256GCM:
c.Algorithm = kms.AES256
case CHACHA20POLY1305:
c.Algorithm = kms.ChaCha20
default:
c.Algorithm = 0
}
c.ID = value.ID
c.IV = value.IV
c.Nonce = value.Nonce
c.Bytes = value.Bytes
return nil
}