minio/cmd/data-usage-cache.go

720 lines
19 KiB
Go
Raw Normal View History

/*
* MinIO Cloud Storage, (C) 2020 MinIO, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"context"
"errors"
"fmt"
"io"
"net/http"
"path"
"path/filepath"
"strings"
"time"
"github.com/cespare/xxhash/v2"
"github.com/klauspost/compress/zstd"
"github.com/minio/minio/cmd/logger"
"github.com/minio/minio/pkg/bucket/lifecycle"
"github.com/minio/minio/pkg/hash"
"github.com/tinylib/msgp/msgp"
)
//go:generate msgp -file $GOFILE -unexported
// dataUsageHash is the hash type used.
type dataUsageHash string
// sizeHistogram is a size histogram.
type sizeHistogram [dataUsageBucketLen]uint64
//msgp:tuple dataUsageEntry
type dataUsageEntry struct {
// These fields do no include any children.
Size int64
ReplicatedSize uint64
ReplicationPendingSize uint64
ReplicationFailedSize uint64
ReplicaSize uint64
Objects uint64
ObjSizes sizeHistogram
Children dataUsageHashMap
}
//msgp:tuple dataUsageEntryV2
type dataUsageEntryV2 struct {
// These fields do no include any children.
Size int64
Objects uint64
ObjSizes sizeHistogram
Children dataUsageHashMap
}
// dataUsageCache contains a cache of data usage entries latest version 3.
type dataUsageCache struct {
Info dataUsageCacheInfo
Disks []string
Cache map[string]dataUsageEntry
}
// dataUsageCache contains a cache of data usage entries version 2.
type dataUsageCacheV2 struct {
Info dataUsageCacheInfo
Disks []string
Cache map[string]dataUsageEntryV2
}
//msgp:ignore dataUsageEntryInfo
type dataUsageEntryInfo struct {
Name string
Parent string
Entry dataUsageEntry
}
type dataUsageCacheInfo struct {
// Name of the bucket. Also root element.
Name string
LastUpdate time.Time
NextCycle uint32
// indicates if the disk is being healed and scanner
// should skip healing the disk
SkipHealing bool
BloomFilter []byte `msg:"BloomFilter,omitempty"`
lifeCycle *lifecycle.Lifecycle `msg:"-"`
}
func (e *dataUsageEntry) addSizes(summary sizeSummary) {
e.Size += summary.totalSize
e.ReplicatedSize += uint64(summary.replicatedSize)
e.ReplicationFailedSize += uint64(summary.failedSize)
e.ReplicationPendingSize += uint64(summary.pendingSize)
e.ReplicaSize += uint64(summary.replicaSize)
}
// merge other data usage entry into this, excluding children.
func (e *dataUsageEntry) merge(other dataUsageEntry) {
e.Objects += other.Objects
e.Size += other.Size
e.ReplicationPendingSize += other.ReplicationPendingSize
e.ReplicationFailedSize += other.ReplicationFailedSize
e.ReplicatedSize += other.ReplicatedSize
e.ReplicaSize += other.ReplicaSize
for i, v := range other.ObjSizes[:] {
e.ObjSizes[i] += v
}
}
// mod returns true if the hash mod cycles == cycle.
// If cycles is 0 false is always returned.
// If cycles is 1 true is always returned (as expected).
func (h dataUsageHash) mod(cycle uint32, cycles uint32) bool {
if cycles <= 1 {
return cycles == 1
}
return uint32(xxhash.Sum64String(string(h)))%cycles == cycle%cycles
}
// addChildString will add a child based on its name.
// If it already exists it will not be added again.
func (e *dataUsageEntry) addChildString(name string) {
e.addChild(hashPath(name))
}
// addChild will add a child based on its hash.
// If it already exists it will not be added again.
func (e *dataUsageEntry) addChild(hash dataUsageHash) {
if _, ok := e.Children[hash.Key()]; ok {
return
}
if e.Children == nil {
e.Children = make(dataUsageHashMap, 1)
}
e.Children[hash.Key()] = struct{}{}
}
// find a path in the cache.
// Returns nil if not found.
func (d *dataUsageCache) find(path string) *dataUsageEntry {
due, ok := d.Cache[hashPath(path).Key()]
if !ok {
return nil
}
return &due
}
// findChildrenCopy returns a copy of the children of the supplied hash.
func (d *dataUsageCache) findChildrenCopy(h dataUsageHash) dataUsageHashMap {
ch := d.Cache[h.String()].Children
res := make(dataUsageHashMap, len(ch))
for k := range ch {
res[k] = struct{}{}
}
return res
}
// Returns nil if not found.
func (d *dataUsageCache) subCache(path string) dataUsageCache {
dst := dataUsageCache{Info: dataUsageCacheInfo{
Name: path,
LastUpdate: d.Info.LastUpdate,
BloomFilter: d.Info.BloomFilter,
}}
dst.copyWithChildren(d, dataUsageHash(hashPath(path).Key()), nil)
return dst
}
func (d *dataUsageCache) deleteRecursive(h dataUsageHash) {
if existing, ok := d.Cache[h.String()]; ok {
// Delete first if there should be a loop.
delete(d.Cache, h.Key())
for child := range existing.Children {
d.deleteRecursive(dataUsageHash(child))
}
}
}
// replaceRootChild will replace the child of root in d with the root of 'other'.
func (d *dataUsageCache) replaceRootChild(other dataUsageCache) {
otherRoot := other.root()
if otherRoot == nil {
logger.LogIf(GlobalContext, errors.New("replaceRootChild: Source has no root"))
return
}
thisRoot := d.root()
if thisRoot == nil {
logger.LogIf(GlobalContext, errors.New("replaceRootChild: Root of current not found"))
return
}
thisRootHash := d.rootHash()
otherRootHash := other.rootHash()
if thisRootHash == otherRootHash {
logger.LogIf(GlobalContext, errors.New("replaceRootChild: Root of child matches root of destination"))
return
}
d.deleteRecursive(other.rootHash())
d.copyWithChildren(&other, other.rootHash(), &thisRootHash)
}
// keepBuckets will keep only the buckets specified specified by delete all others.
func (d *dataUsageCache) keepBuckets(b []BucketInfo) {
lu := make(map[dataUsageHash]struct{})
for _, v := range b {
lu[hashPath(v.Name)] = struct{}{}
}
d.keepRootChildren(lu)
}
// keepRootChildren will keep the root children specified by delete all others.
func (d *dataUsageCache) keepRootChildren(list map[dataUsageHash]struct{}) {
if d.root() == nil {
return
}
rh := d.rootHash()
for k := range d.Cache {
h := dataUsageHash(k)
if h == rh {
continue
}
if _, ok := list[h]; !ok {
delete(d.Cache, k)
d.deleteRecursive(h)
}
}
}
// dui converts the flattened version of the path to DataUsageInfo.
// As a side effect d will be flattened, use a clone if this is not ok.
func (d *dataUsageCache) dui(path string, buckets []BucketInfo) DataUsageInfo {
e := d.find(path)
if e == nil {
// No entry found, return empty.
return DataUsageInfo{}
}
flat := d.flatten(*e)
return DataUsageInfo{
LastUpdate: d.Info.LastUpdate,
ObjectsTotalCount: flat.Objects,
ObjectsTotalSize: uint64(flat.Size),
ReplicatedSize: flat.ReplicatedSize,
ReplicationFailedSize: flat.ReplicationFailedSize,
ReplicationPendingSize: flat.ReplicationPendingSize,
ReplicaSize: flat.ReplicaSize,
BucketsCount: uint64(len(e.Children)),
BucketsUsage: d.bucketsUsageInfo(buckets),
}
}
// replace will add or replace an entry in the cache.
// If a parent is specified it will be added to that if not already there.
// If the parent does not exist, it will be added.
func (d *dataUsageCache) replace(path, parent string, e dataUsageEntry) {
hash := hashPath(path)
if d.Cache == nil {
d.Cache = make(map[string]dataUsageEntry, 100)
}
d.Cache[hash.Key()] = e
if parent != "" {
phash := hashPath(parent)
p := d.Cache[phash.Key()]
p.addChild(hash)
d.Cache[phash.Key()] = p
}
}
// replaceHashed add or replaces an entry to the cache based on its hash.
// If a parent is specified it will be added to that if not already there.
// If the parent does not exist, it will be added.
func (d *dataUsageCache) replaceHashed(hash dataUsageHash, parent *dataUsageHash, e dataUsageEntry) {
if d.Cache == nil {
d.Cache = make(map[string]dataUsageEntry, 100)
}
d.Cache[hash.Key()] = e
if parent != nil {
p := d.Cache[parent.Key()]
p.addChild(hash)
d.Cache[parent.Key()] = p
}
}
// copyWithChildren will copy entry with hash from src if it exists along with any children.
// If a parent is specified it will be added to that if not already there.
// If the parent does not exist, it will be added.
func (d *dataUsageCache) copyWithChildren(src *dataUsageCache, hash dataUsageHash, parent *dataUsageHash) {
if d.Cache == nil {
d.Cache = make(map[string]dataUsageEntry, 100)
}
e, ok := src.Cache[hash.String()]
if !ok {
return
}
d.Cache[hash.Key()] = e
for ch := range e.Children {
if ch == hash.Key() {
logger.LogIf(GlobalContext, errors.New("dataUsageCache.copyWithChildren: Circular reference"))
return
}
d.copyWithChildren(src, dataUsageHash(ch), &hash)
}
if parent != nil {
p := d.Cache[parent.Key()]
p.addChild(hash)
d.Cache[parent.Key()] = p
}
}
// StringAll returns a detailed string representation of all entries in the cache.
func (d *dataUsageCache) StringAll() string {
s := fmt.Sprintf("info:%+v\n", d.Info)
for k, v := range d.Cache {
s += fmt.Sprintf("\t%v: %+v\n", k, v)
}
return strings.TrimSpace(s)
}
// String returns a human readable representation of the string.
func (h dataUsageHash) String() string {
return string(h)
}
// String returns a human readable representation of the string.
func (h dataUsageHash) Key() string {
return string(h)
}
// flatten all children of the root into the root element and return it.
func (d *dataUsageCache) flatten(root dataUsageEntry) dataUsageEntry {
for id := range root.Children {
e := d.Cache[id]
if len(e.Children) > 0 {
e = d.flatten(e)
}
root.merge(e)
}
root.Children = nil
return root
}
// add a size to the histogram.
func (h *sizeHistogram) add(size int64) {
// Fetch the histogram interval corresponding
// to the passed object size.
for i, interval := range ObjectsHistogramIntervals {
if size >= interval.start && size <= interval.end {
h[i]++
break
}
}
}
// toMap returns the map to a map[string]uint64.
func (h *sizeHistogram) toMap() map[string]uint64 {
res := make(map[string]uint64, dataUsageBucketLen)
for i, count := range h {
res[ObjectsHistogramIntervals[i].name] = count
}
return res
}
// bucketsUsageInfo returns the buckets usage info as a map, with
// key as bucket name
func (d *dataUsageCache) bucketsUsageInfo(buckets []BucketInfo) map[string]BucketUsageInfo {
var dst = make(map[string]BucketUsageInfo, len(buckets))
for _, bucket := range buckets {
e := d.find(bucket.Name)
if e == nil {
continue
}
flat := d.flatten(*e)
dst[bucket.Name] = BucketUsageInfo{
Size: uint64(flat.Size),
ObjectsCount: flat.Objects,
ReplicationPendingSize: flat.ReplicationPendingSize,
ReplicatedSize: flat.ReplicatedSize,
ReplicationFailedSize: flat.ReplicationFailedSize,
ReplicaSize: flat.ReplicaSize,
ObjectSizesHistogram: flat.ObjSizes.toMap(),
}
}
return dst
}
// bucketUsageInfo returns the buckets usage info.
// If not found all values returned are zero values.
func (d *dataUsageCache) bucketUsageInfo(bucket string) BucketUsageInfo {
e := d.find(bucket)
if e == nil {
return BucketUsageInfo{}
}
flat := d.flatten(*e)
return BucketUsageInfo{
Size: uint64(flat.Size),
ObjectsCount: flat.Objects,
ReplicationPendingSize: flat.ReplicationPendingSize,
ReplicatedSize: flat.ReplicatedSize,
ReplicationFailedSize: flat.ReplicationFailedSize,
ReplicaSize: flat.ReplicaSize,
ObjectSizesHistogram: flat.ObjSizes.toMap(),
}
}
// sizeRecursive returns the path as a flattened entry.
func (d *dataUsageCache) sizeRecursive(path string) *dataUsageEntry {
root := d.find(path)
if root == nil || len(root.Children) == 0 {
return root
}
flat := d.flatten(*root)
return &flat
}
// root returns the root of the cache.
func (d *dataUsageCache) root() *dataUsageEntry {
return d.find(d.Info.Name)
}
// rootHash returns the root of the cache.
func (d *dataUsageCache) rootHash() dataUsageHash {
return hashPath(d.Info.Name)
}
// clone returns a copy of the cache with no references to the existing.
func (d *dataUsageCache) clone() dataUsageCache {
clone := dataUsageCache{
Info: d.Info,
Cache: make(map[string]dataUsageEntry, len(d.Cache)),
}
for k, v := range d.Cache {
clone.Cache[k] = v
}
return clone
}
// merge root of other into d.
// children of root will be flattened before being merged.
// Last update time will be set to the last updated.
func (d *dataUsageCache) merge(other dataUsageCache) {
existingRoot := d.root()
otherRoot := other.root()
if existingRoot == nil && otherRoot == nil {
return
}
if otherRoot == nil {
return
}
if existingRoot == nil {
*d = other.clone()
return
}
if other.Info.LastUpdate.After(d.Info.LastUpdate) {
d.Info.LastUpdate = other.Info.LastUpdate
}
existingRoot.merge(*otherRoot)
eHash := d.rootHash()
for key := range otherRoot.Children {
entry := other.Cache[key]
flat := other.flatten(entry)
existing := d.Cache[key]
// If not found, merging simply adds.
existing.merge(flat)
d.replaceHashed(dataUsageHash(key), &eHash, existing)
}
}
type objectIO interface {
GetObjectNInfo(ctx context.Context, bucket, object string, rs *HTTPRangeSpec, h http.Header, lockType LockType, opts ObjectOptions) (reader *GetObjectReader, err error)
PutObject(ctx context.Context, bucket, object string, data *PutObjReader, opts ObjectOptions) (objInfo ObjectInfo, err error)
}
// load the cache content with name from minioMetaBackgroundOpsBucket.
// Only backend errors are returned as errors.
// If the object is not found or unable to deserialize d is cleared and nil error is returned.
func (d *dataUsageCache) load(ctx context.Context, store objectIO, name string) error {
r, err := store.GetObjectNInfo(ctx, dataUsageBucket, name, nil, http.Header{}, readLock, ObjectOptions{})
if err != nil {
switch err.(type) {
case ObjectNotFound:
case BucketNotFound:
case InsufficientReadQuorum:
default:
return toObjectErr(err, dataUsageBucket, name)
}
*d = dataUsageCache{}
return nil
}
defer r.Close()
if err := d.deserialize(r); err != nil {
*d = dataUsageCache{}
logger.LogOnceIf(ctx, err, err.Error())
}
return nil
}
// save the content of the cache to minioMetaBackgroundOpsBucket with the provided name.
func (d *dataUsageCache) save(ctx context.Context, store objectIO, name string) error {
pr, pw := io.Pipe()
go func() {
pw.CloseWithError(d.serializeTo(pw))
}()
defer pr.Close()
r, err := hash.NewReader(pr, -1, "", "", -1, false)
if err != nil {
return err
}
_, err = store.PutObject(ctx,
dataUsageBucket,
name,
NewPutObjReader(r),
ObjectOptions{})
if isErrBucketNotFound(err) {
return nil
}
return err
}
// dataUsageCacheVer indicates the cache version.
// Bumping the cache version will drop data from previous versions
// and write new data with the new version.
const (
dataUsageCacheVerV3 = 3
dataUsageCacheVerV2 = 2
dataUsageCacheVerV1 = 1
)
// serialize the contents of the cache.
func (d *dataUsageCache) serializeTo(dst io.Writer) error {
// Add version and compress.
_, err := dst.Write([]byte{dataUsageCacheVerV3})
if err != nil {
return err
}
enc, err := zstd.NewWriter(dst,
zstd.WithEncoderLevel(zstd.SpeedFastest),
zstd.WithWindowSize(1<<20),
zstd.WithEncoderConcurrency(2))
if err != nil {
return err
}
mEnc := msgp.NewWriter(enc)
err = d.EncodeMsg(mEnc)
if err != nil {
return err
}
err = mEnc.Flush()
if err != nil {
return err
}
err = enc.Close()
if err != nil {
return err
}
return nil
}
// deserialize the supplied byte slice into the cache.
func (d *dataUsageCache) deserialize(r io.Reader) error {
var b [1]byte
n, _ := r.Read(b[:])
if n != 1 {
return io.ErrUnexpectedEOF
}
switch b[0] {
case dataUsageCacheVerV1:
return errors.New("cache version deprecated (will autoupdate)")
case dataUsageCacheVerV2:
// Zstd compressed.
dec, err := zstd.NewReader(r, zstd.WithDecoderConcurrency(2))
if err != nil {
return err
}
defer dec.Close()
dold := &dataUsageCacheV2{}
if err = dold.DecodeMsg(msgp.NewReader(dec)); err != nil {
return err
}
d.Info = dold.Info
d.Disks = dold.Disks
d.Cache = make(map[string]dataUsageEntry, len(dold.Cache))
for k, v := range dold.Cache {
d.Cache[k] = dataUsageEntry{
Size: v.Size,
Objects: v.Objects,
ObjSizes: v.ObjSizes,
Children: v.Children,
}
}
return nil
case dataUsageCacheVerV3:
// Zstd compressed.
dec, err := zstd.NewReader(r, zstd.WithDecoderConcurrency(2))
if err != nil {
return err
}
defer dec.Close()
return d.DecodeMsg(msgp.NewReader(dec))
}
return fmt.Errorf("dataUsageCache: unknown version: %d", int(b[0]))
}
// Trim this from start+end of hashes.
var hashPathCutSet = dataUsageRoot
func init() {
if dataUsageRoot != string(filepath.Separator) {
hashPathCutSet = dataUsageRoot + string(filepath.Separator)
}
}
// hashPath calculates a hash of the provided string.
func hashPath(data string) dataUsageHash {
if data != dataUsageRoot {
data = strings.Trim(data, hashPathCutSet)
}
return dataUsageHash(path.Clean(data))
}
//msgp:ignore dataUsageHashMap
type dataUsageHashMap map[string]struct{}
// DecodeMsg implements msgp.Decodable
func (z *dataUsageHashMap) DecodeMsg(dc *msgp.Reader) (err error) {
var zb0002 uint32
zb0002, err = dc.ReadArrayHeader()
if err != nil {
err = msgp.WrapError(err)
return
}
*z = make(dataUsageHashMap, zb0002)
for i := uint32(0); i < zb0002; i++ {
{
var zb0003 string
zb0003, err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err)
return
}
(*z)[zb0003] = struct{}{}
}
}
return
}
// EncodeMsg implements msgp.Encodable
func (z dataUsageHashMap) EncodeMsg(en *msgp.Writer) (err error) {
err = en.WriteArrayHeader(uint32(len(z)))
if err != nil {
err = msgp.WrapError(err)
return
}
for zb0004 := range z {
err = en.WriteString(zb0004)
if err != nil {
err = msgp.WrapError(err, zb0004)
return
}
}
return
}
// MarshalMsg implements msgp.Marshaler
func (z dataUsageHashMap) MarshalMsg(b []byte) (o []byte, err error) {
o = msgp.Require(b, z.Msgsize())
o = msgp.AppendArrayHeader(o, uint32(len(z)))
for zb0004 := range z {
o = msgp.AppendString(o, zb0004)
}
return
}
// UnmarshalMsg implements msgp.Unmarshaler
func (z *dataUsageHashMap) UnmarshalMsg(bts []byte) (o []byte, err error) {
var zb0002 uint32
zb0002, bts, err = msgp.ReadArrayHeaderBytes(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
*z = make(dataUsageHashMap, zb0002)
for i := uint32(0); i < zb0002; i++ {
{
var zb0003 string
zb0003, bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
(*z)[zb0003] = struct{}{}
}
}
o = bts
return
}
// Msgsize returns an upper bound estimate of the number of bytes occupied by the serialized message
func (z dataUsageHashMap) Msgsize() (s int) {
s = msgp.ArrayHeaderSize
for zb0004 := range z {
s += msgp.StringPrefixSize + len(zb0004)
}
return
}