minio/internal/dsync/lock-args_gen.go

478 lines
10 KiB
Go
Raw Normal View History

package dsync
// Code generated by github.com/tinylib/msgp DO NOT EDIT.
import (
"github.com/tinylib/msgp/msgp"
)
// DecodeMsg implements msgp.Decodable
func (z *LockArgs) DecodeMsg(dc *msgp.Reader) (err error) {
var field []byte
_ = field
var zb0001 uint32
zb0001, err = dc.ReadMapHeader()
if err != nil {
err = msgp.WrapError(err)
return
}
for zb0001 > 0 {
zb0001--
field, err = dc.ReadMapKeyPtr()
if err != nil {
err = msgp.WrapError(err)
return
}
switch msgp.UnsafeString(field) {
case "UID":
z.UID, err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err, "UID")
return
}
case "Resources":
var zb0002 uint32
zb0002, err = dc.ReadArrayHeader()
if err != nil {
err = msgp.WrapError(err, "Resources")
return
}
if cap(z.Resources) >= int(zb0002) {
z.Resources = (z.Resources)[:zb0002]
} else {
z.Resources = make([]string, zb0002)
}
for za0001 := range z.Resources {
z.Resources[za0001], err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err, "Resources", za0001)
return
}
}
case "Owner":
z.Owner, err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err, "Owner")
return
}
case "Source":
z.Source, err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err, "Source")
return
}
case "Quorum":
if dc.IsNil() {
err = dc.ReadNil()
if err != nil {
err = msgp.WrapError(err, "Quorum")
return
}
z.Quorum = nil
} else {
if z.Quorum == nil {
z.Quorum = new(int)
}
*z.Quorum, err = dc.ReadInt()
if err != nil {
err = msgp.WrapError(err, "Quorum")
return
}
}
default:
err = dc.Skip()
if err != nil {
err = msgp.WrapError(err)
return
}
}
}
return
}
// EncodeMsg implements msgp.Encodable
func (z *LockArgs) EncodeMsg(en *msgp.Writer) (err error) {
// map header, size 5
// write "UID"
err = en.Append(0x85, 0xa3, 0x55, 0x49, 0x44)
if err != nil {
return
}
err = en.WriteString(z.UID)
if err != nil {
err = msgp.WrapError(err, "UID")
return
}
// write "Resources"
err = en.Append(0xa9, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73)
if err != nil {
return
}
err = en.WriteArrayHeader(uint32(len(z.Resources)))
if err != nil {
err = msgp.WrapError(err, "Resources")
return
}
for za0001 := range z.Resources {
err = en.WriteString(z.Resources[za0001])
if err != nil {
err = msgp.WrapError(err, "Resources", za0001)
return
}
}
// write "Owner"
err = en.Append(0xa5, 0x4f, 0x77, 0x6e, 0x65, 0x72)
if err != nil {
return
}
err = en.WriteString(z.Owner)
if err != nil {
err = msgp.WrapError(err, "Owner")
return
}
// write "Source"
err = en.Append(0xa6, 0x53, 0x6f, 0x75, 0x72, 0x63, 0x65)
if err != nil {
return
}
err = en.WriteString(z.Source)
if err != nil {
err = msgp.WrapError(err, "Source")
return
}
// write "Quorum"
err = en.Append(0xa6, 0x51, 0x75, 0x6f, 0x72, 0x75, 0x6d)
if err != nil {
return
}
if z.Quorum == nil {
err = en.WriteNil()
if err != nil {
return
}
} else {
err = en.WriteInt(*z.Quorum)
if err != nil {
err = msgp.WrapError(err, "Quorum")
return
}
}
return
}
// MarshalMsg implements msgp.Marshaler
func (z *LockArgs) MarshalMsg(b []byte) (o []byte, err error) {
o = msgp.Require(b, z.Msgsize())
// map header, size 5
// string "UID"
o = append(o, 0x85, 0xa3, 0x55, 0x49, 0x44)
o = msgp.AppendString(o, z.UID)
// string "Resources"
o = append(o, 0xa9, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73)
o = msgp.AppendArrayHeader(o, uint32(len(z.Resources)))
for za0001 := range z.Resources {
o = msgp.AppendString(o, z.Resources[za0001])
}
// string "Owner"
o = append(o, 0xa5, 0x4f, 0x77, 0x6e, 0x65, 0x72)
o = msgp.AppendString(o, z.Owner)
// string "Source"
o = append(o, 0xa6, 0x53, 0x6f, 0x75, 0x72, 0x63, 0x65)
o = msgp.AppendString(o, z.Source)
// string "Quorum"
o = append(o, 0xa6, 0x51, 0x75, 0x6f, 0x72, 0x75, 0x6d)
if z.Quorum == nil {
o = msgp.AppendNil(o)
} else {
o = msgp.AppendInt(o, *z.Quorum)
}
return
}
// UnmarshalMsg implements msgp.Unmarshaler
func (z *LockArgs) UnmarshalMsg(bts []byte) (o []byte, err error) {
var field []byte
_ = field
var zb0001 uint32
zb0001, bts, err = msgp.ReadMapHeaderBytes(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
for zb0001 > 0 {
zb0001--
field, bts, err = msgp.ReadMapKeyZC(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
switch msgp.UnsafeString(field) {
case "UID":
z.UID, bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err, "UID")
return
}
case "Resources":
var zb0002 uint32
zb0002, bts, err = msgp.ReadArrayHeaderBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Resources")
return
}
if cap(z.Resources) >= int(zb0002) {
z.Resources = (z.Resources)[:zb0002]
} else {
z.Resources = make([]string, zb0002)
}
for za0001 := range z.Resources {
z.Resources[za0001], bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Resources", za0001)
return
}
}
case "Owner":
z.Owner, bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Owner")
return
}
case "Source":
z.Source, bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Source")
return
}
case "Quorum":
if msgp.IsNil(bts) {
bts, err = msgp.ReadNilBytes(bts)
if err != nil {
return
}
z.Quorum = nil
} else {
if z.Quorum == nil {
z.Quorum = new(int)
}
*z.Quorum, bts, err = msgp.ReadIntBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Quorum")
return
}
}
default:
bts, err = msgp.Skip(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
}
}
o = bts
return
}
// Msgsize returns an upper bound estimate of the number of bytes occupied by the serialized message
func (z *LockArgs) Msgsize() (s int) {
s = 1 + 4 + msgp.StringPrefixSize + len(z.UID) + 10 + msgp.ArrayHeaderSize
for za0001 := range z.Resources {
s += msgp.StringPrefixSize + len(z.Resources[za0001])
}
s += 6 + msgp.StringPrefixSize + len(z.Owner) + 7 + msgp.StringPrefixSize + len(z.Source) + 7
if z.Quorum == nil {
s += msgp.NilSize
} else {
s += msgp.IntSize
}
return
}
perf: websocket grid connectivity for all internode communication (#18461) This PR adds a WebSocket grid feature that allows servers to communicate via a single two-way connection. There are two request types: * Single requests, which are `[]byte => ([]byte, error)`. This is for efficient small roundtrips with small payloads. * Streaming requests which are `[]byte, chan []byte => chan []byte (and error)`, which allows for different combinations of full two-way streams with an initial payload. Only a single stream is created between two machines - and there is, as such, no server/client relation since both sides can initiate and handle requests. Which server initiates the request is decided deterministically on the server names. Requests are made through a mux client and server, which handles message passing, congestion, cancelation, timeouts, etc. If a connection is lost, all requests are canceled, and the calling server will try to reconnect. Registered handlers can operate directly on byte slices or use a higher-level generics abstraction. There is no versioning of handlers/clients, and incompatible changes should be handled by adding new handlers. The request path can be changed to a new one for any protocol changes. First, all servers create a "Manager." The manager must know its address as well as all remote addresses. This will manage all connections. To get a connection to any remote, ask the manager to provide it given the remote address using. ``` func (m *Manager) Connection(host string) *Connection ``` All serverside handlers must also be registered on the manager. This will make sure that all incoming requests are served. The number of in-flight requests and responses must also be given for streaming requests. The "Connection" returned manages the mux-clients. Requests issued to the connection will be sent to the remote. * `func (c *Connection) Request(ctx context.Context, h HandlerID, req []byte) ([]byte, error)` performs a single request and returns the result. Any deadline provided on the request is forwarded to the server, and canceling the context will make the function return at once. * `func (c *Connection) NewStream(ctx context.Context, h HandlerID, payload []byte) (st *Stream, err error)` will initiate a remote call and send the initial payload. ```Go // A Stream is a two-way stream. // All responses *must* be read by the caller. // If the call is canceled through the context, //The appropriate error will be returned. type Stream struct { // Responses from the remote server. // Channel will be closed after an error or when the remote closes. // All responses *must* be read by the caller until either an error is returned or the channel is closed. // Canceling the context will cause the context cancellation error to be returned. Responses <-chan Response // Requests sent to the server. // If the handler is defined with 0 incoming capacity this will be nil. // Channel *must* be closed to signal the end of the stream. // If the request context is canceled, the stream will no longer process requests. Requests chan<- []byte } type Response struct { Msg []byte Err error } ``` There are generic versions of the server/client handlers that allow the use of type safe implementations for data types that support msgpack marshal/unmarshal.
2023-11-20 20:09:35 -05:00
// DecodeMsg implements msgp.Decodable
func (z *LockResp) DecodeMsg(dc *msgp.Reader) (err error) {
var field []byte
_ = field
var zb0001 uint32
zb0001, err = dc.ReadMapHeader()
if err != nil {
err = msgp.WrapError(err)
return
}
for zb0001 > 0 {
zb0001--
field, err = dc.ReadMapKeyPtr()
if err != nil {
err = msgp.WrapError(err)
return
}
switch msgp.UnsafeString(field) {
case "Code":
{
var zb0002 uint8
zb0002, err = dc.ReadUint8()
if err != nil {
err = msgp.WrapError(err, "Code")
return
}
z.Code = ResponseCode(zb0002)
}
case "Err":
z.Err, err = dc.ReadString()
if err != nil {
err = msgp.WrapError(err, "Err")
return
}
default:
err = dc.Skip()
if err != nil {
err = msgp.WrapError(err)
return
}
}
}
return
}
// EncodeMsg implements msgp.Encodable
func (z LockResp) EncodeMsg(en *msgp.Writer) (err error) {
// map header, size 2
// write "Code"
err = en.Append(0x82, 0xa4, 0x43, 0x6f, 0x64, 0x65)
if err != nil {
return
}
err = en.WriteUint8(uint8(z.Code))
if err != nil {
err = msgp.WrapError(err, "Code")
return
}
// write "Err"
err = en.Append(0xa3, 0x45, 0x72, 0x72)
if err != nil {
return
}
err = en.WriteString(z.Err)
if err != nil {
err = msgp.WrapError(err, "Err")
return
}
return
}
// MarshalMsg implements msgp.Marshaler
func (z LockResp) MarshalMsg(b []byte) (o []byte, err error) {
o = msgp.Require(b, z.Msgsize())
// map header, size 2
// string "Code"
o = append(o, 0x82, 0xa4, 0x43, 0x6f, 0x64, 0x65)
o = msgp.AppendUint8(o, uint8(z.Code))
// string "Err"
o = append(o, 0xa3, 0x45, 0x72, 0x72)
o = msgp.AppendString(o, z.Err)
return
}
// UnmarshalMsg implements msgp.Unmarshaler
func (z *LockResp) UnmarshalMsg(bts []byte) (o []byte, err error) {
var field []byte
_ = field
var zb0001 uint32
zb0001, bts, err = msgp.ReadMapHeaderBytes(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
for zb0001 > 0 {
zb0001--
field, bts, err = msgp.ReadMapKeyZC(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
switch msgp.UnsafeString(field) {
case "Code":
{
var zb0002 uint8
zb0002, bts, err = msgp.ReadUint8Bytes(bts)
if err != nil {
err = msgp.WrapError(err, "Code")
return
}
z.Code = ResponseCode(zb0002)
}
case "Err":
z.Err, bts, err = msgp.ReadStringBytes(bts)
if err != nil {
err = msgp.WrapError(err, "Err")
return
}
default:
bts, err = msgp.Skip(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
}
}
o = bts
return
}
// Msgsize returns an upper bound estimate of the number of bytes occupied by the serialized message
func (z LockResp) Msgsize() (s int) {
s = 1 + 5 + msgp.Uint8Size + 4 + msgp.StringPrefixSize + len(z.Err)
return
}
// DecodeMsg implements msgp.Decodable
func (z *ResponseCode) DecodeMsg(dc *msgp.Reader) (err error) {
{
var zb0001 uint8
zb0001, err = dc.ReadUint8()
if err != nil {
err = msgp.WrapError(err)
return
}
(*z) = ResponseCode(zb0001)
}
return
}
// EncodeMsg implements msgp.Encodable
func (z ResponseCode) EncodeMsg(en *msgp.Writer) (err error) {
err = en.WriteUint8(uint8(z))
if err != nil {
err = msgp.WrapError(err)
return
}
return
}
// MarshalMsg implements msgp.Marshaler
func (z ResponseCode) MarshalMsg(b []byte) (o []byte, err error) {
o = msgp.Require(b, z.Msgsize())
o = msgp.AppendUint8(o, uint8(z))
return
}
// UnmarshalMsg implements msgp.Unmarshaler
func (z *ResponseCode) UnmarshalMsg(bts []byte) (o []byte, err error) {
{
var zb0001 uint8
zb0001, bts, err = msgp.ReadUint8Bytes(bts)
if err != nil {
err = msgp.WrapError(err)
return
}
(*z) = ResponseCode(zb0001)
}
o = bts
return
}
// Msgsize returns an upper bound estimate of the number of bytes occupied by the serialized message
func (z ResponseCode) Msgsize() (s int) {
s = msgp.Uint8Size
return
}