minio/internal/kms/single-key.go

233 lines
5.6 KiB
Go
Raw Normal View History

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package kms
import (
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/sha256"
"encoding/base64"
"errors"
"fmt"
"strconv"
"strings"
jsoniter "github.com/json-iterator/go"
"github.com/secure-io/sio-go/sioutil"
"golang.org/x/crypto/chacha20"
"golang.org/x/crypto/chacha20poly1305"
)
// Parse parses s as single-key KMS. The given string
// is expected to have the following format:
// <key-id>:<base64-key>
//
// The returned KMS implementation uses the parsed
// key ID and key to derive new DEKs and decrypt ciphertext.
func Parse(s string) (KMS, error) {
v := strings.SplitN(s, ":", 2)
if len(v) != 2 {
return nil, errors.New("kms: invalid master key format")
}
var keyID, b64Key = v[0], v[1]
key, err := base64.StdEncoding.DecodeString(b64Key)
if err != nil {
return nil, err
}
return New(keyID, key)
}
// New returns a single-key KMS that derives new DEKs from the
// given key.
func New(keyID string, key []byte) (KMS, error) {
if len(key) != 32 {
return nil, errors.New("kms: invalid key length " + strconv.Itoa(len(key)))
}
return secretKey{
keyID: keyID,
key: key,
}, nil
}
// secretKey is a KMS implementation that derives new DEKs
// from a single key.
type secretKey struct {
keyID string
key []byte
}
var _ KMS = secretKey{} // compiler check
const ( // algorithms used to derive and encrypt DEKs
algorithmAESGCM = "AES-256-GCM-HMAC-SHA-256"
algorithmChaCha20Poly1305 = "ChaCha20Poly1305"
)
func (kms secretKey) Stat() (Status, error) {
return Status{
Name: "SecretKey",
DefaultKey: kms.keyID,
}, nil
}
func (secretKey) CreateKey(string) error {
return errors.New("kms: creating keys is not supported")
}
func (kms secretKey) GenerateKey(keyID string, context Context) (DEK, error) {
if keyID == "" {
keyID = kms.keyID
}
if keyID != kms.keyID {
return DEK{}, fmt.Errorf("kms: key %q does not exist", keyID)
}
iv, err := sioutil.Random(16)
if err != nil {
return DEK{}, err
}
var algorithm string
if sioutil.NativeAES() {
algorithm = algorithmAESGCM
} else {
algorithm = algorithmChaCha20Poly1305
}
var aead cipher.AEAD
switch algorithm {
case algorithmAESGCM:
mac := hmac.New(sha256.New, kms.key)
mac.Write(iv)
sealingKey := mac.Sum(nil)
var block cipher.Block
block, err = aes.NewCipher(sealingKey)
if err != nil {
return DEK{}, err
}
aead, err = cipher.NewGCM(block)
if err != nil {
return DEK{}, err
}
case algorithmChaCha20Poly1305:
var sealingKey []byte
sealingKey, err = chacha20.HChaCha20(kms.key, iv)
if err != nil {
return DEK{}, err
}
aead, err = chacha20poly1305.New(sealingKey)
if err != nil {
return DEK{}, err
}
default:
return DEK{}, errors.New("invalid algorithm: " + algorithm)
}
nonce, err := sioutil.Random(aead.NonceSize())
if err != nil {
return DEK{}, err
}
plaintext, err := sioutil.Random(32)
if err != nil {
return DEK{}, err
}
associatedData, _ := context.MarshalText()
ciphertext := aead.Seal(nil, nonce, plaintext, associatedData)
var json = jsoniter.ConfigCompatibleWithStandardLibrary
ciphertext, err = json.Marshal(encryptedKey{
Algorithm: algorithm,
IV: iv,
Nonce: nonce,
Bytes: ciphertext,
})
if err != nil {
return DEK{}, err
}
return DEK{
KeyID: keyID,
Plaintext: plaintext,
Ciphertext: ciphertext,
}, nil
}
func (kms secretKey) DecryptKey(keyID string, ciphertext []byte, context Context) ([]byte, error) {
if keyID != kms.keyID {
return nil, fmt.Errorf("kms: key %q does not exist", keyID)
}
var encryptedKey encryptedKey
var json = jsoniter.ConfigCompatibleWithStandardLibrary
if err := json.Unmarshal(ciphertext, &encryptedKey); err != nil {
return nil, err
}
if n := len(encryptedKey.IV); n != 16 {
return nil, fmt.Errorf("kms: invalid iv size")
}
var aead cipher.AEAD
switch encryptedKey.Algorithm {
case algorithmAESGCM:
mac := hmac.New(sha256.New, kms.key)
mac.Write(encryptedKey.IV)
sealingKey := mac.Sum(nil)
block, err := aes.NewCipher(sealingKey)
if err != nil {
return nil, err
}
aead, err = cipher.NewGCM(block)
if err != nil {
return nil, err
}
case algorithmChaCha20Poly1305:
sealingKey, err := chacha20.HChaCha20(kms.key, encryptedKey.IV)
if err != nil {
return nil, err
}
aead, err = chacha20poly1305.New(sealingKey)
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("kms: invalid algorithm: %q", encryptedKey.Algorithm)
}
if n := len(encryptedKey.Nonce); n != aead.NonceSize() {
return nil, fmt.Errorf("kms: invalid nonce size %d", n)
}
associatedData, _ := context.MarshalText()
plaintext, err := aead.Open(nil, encryptedKey.Nonce, encryptedKey.Bytes, associatedData)
if err != nil {
return nil, fmt.Errorf("kms: encrypted key is not authentic")
}
return plaintext, nil
}
type encryptedKey struct {
Algorithm string `json:"aead"`
IV []byte `json:"iv"`
Nonce []byte `json:"nonce"`
Bytes []byte `json:"bytes"`
}