minio/internal/kms/kes.go

520 lines
15 KiB
Go
Raw Normal View History

// Copyright (c) 2015-2021 MinIO, Inc.
//
// This file is part of MinIO Object Storage stack
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package kms
import (
"bytes"
"context"
"crypto/subtle"
"crypto/tls"
"crypto/x509"
"errors"
"fmt"
"strings"
"sync"
"github.com/minio/kes-go"
"github.com/minio/pkg/certs"
"github.com/minio/pkg/env"
)
const (
tlsClientSessionCacheSize = 100
)
// Config contains various KMS-related configuration
// parameters - like KMS endpoints or authentication
// credentials.
type Config struct {
// Endpoints contains a list of KMS server
// HTTP endpoints.
Endpoints []string
// Enclave is the KES server enclave. If empty,
// none resp. the default KES server enclave
// will be used.
Enclave string
// DefaultKeyID is the key ID used when
// no explicit key ID is specified for
// a cryptographic operation.
DefaultKeyID string
// APIKey is an credential provided by env. var.
// to authenticate to a KES server. Either an
// API key or a client certificate must be specified.
APIKey kes.APIKey
// Certificate is the client TLS certificate
// to authenticate to KMS via mTLS.
Certificate *certs.Certificate
// ReloadCertEvents is an event channel that receives
// the reloaded client certificate.
ReloadCertEvents <-chan tls.Certificate
// RootCAs is a set of root CA certificates
// to verify the KMS server TLS certificate.
RootCAs *x509.CertPool
}
// NewWithConfig returns a new KMS using the given
// configuration.
func NewWithConfig(config Config) (KMS, error) {
if len(config.Endpoints) == 0 {
return nil, errors.New("kms: no server endpoints")
}
endpoints := make([]string, len(config.Endpoints)) // Copy => avoid being affect by any changes to the original slice
copy(endpoints, config.Endpoints)
var client *kes.Client
if config.APIKey != nil {
cert, err := kes.GenerateCertificate(config.APIKey)
if err != nil {
return nil, err
}
client = kes.NewClientWithConfig("", &tls.Config{
MinVersion: tls.VersionTLS12,
Certificates: []tls.Certificate{cert},
RootCAs: config.RootCAs,
ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize),
})
} else {
client = kes.NewClientWithConfig("", &tls.Config{
MinVersion: tls.VersionTLS12,
Certificates: []tls.Certificate{config.Certificate.Get()},
RootCAs: config.RootCAs,
ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize),
})
}
client.Endpoints = endpoints
var bulkAvailable bool
_, policy, err := client.DescribeSelf(context.Background())
if err == nil {
const BulkAPI = "/v1/key/bulk/decrypt/"
for _, allow := range policy.Allow {
if strings.HasPrefix(allow, BulkAPI) {
bulkAvailable = true
break
}
}
}
c := &kesClient{
client: client,
enclave: client.Enclave(config.Enclave),
defaultKeyID: config.DefaultKeyID,
bulkAvailable: bulkAvailable,
}
go func() {
if config.Certificate == nil || config.ReloadCertEvents == nil {
return
}
var prevCertificate tls.Certificate
for {
2022-12-05 14:18:50 -05:00
certificate, ok := <-config.ReloadCertEvents
if !ok {
return
}
sameCert := len(certificate.Certificate) == len(prevCertificate.Certificate)
for i, b := range certificate.Certificate {
if !sameCert {
2022-12-05 14:18:50 -05:00
break
}
2022-12-05 14:18:50 -05:00
sameCert = sameCert && bytes.Equal(b, prevCertificate.Certificate[i])
}
// Do not reload if its the same cert as before.
if !sameCert {
client := kes.NewClientWithConfig("", &tls.Config{
MinVersion: tls.VersionTLS12,
Certificates: []tls.Certificate{certificate},
RootCAs: config.RootCAs,
ClientSessionCache: tls.NewLRUClientSessionCache(tlsClientSessionCacheSize),
})
client.Endpoints = endpoints
c.lock.Lock()
c.client = client
c.enclave = c.client.Enclave(config.Enclave)
c.lock.Unlock()
prevCertificate = certificate
}
}
}()
return c, nil
}
type kesClient struct {
lock sync.RWMutex
defaultKeyID string
client *kes.Client
enclave *kes.Enclave
bulkAvailable bool
}
var _ KMS = (*kesClient)(nil) // compiler check
// Stat returns the current KES status containing a
// list of KES endpoints and the default key ID.
func (c *kesClient) Stat(ctx context.Context) (Status, error) {
c.lock.RLock()
defer c.lock.RUnlock()
st, err := c.client.Status(ctx)
if err != nil {
return Status{}, err
}
endpoints := make([]string, len(c.client.Endpoints))
copy(endpoints, c.client.Endpoints)
return Status{
Name: "KES",
Endpoints: endpoints,
DefaultKey: c.defaultKeyID,
Details: st,
}, nil
}
// IsLocal returns true if the KMS is a local implementation
func (c *kesClient) IsLocal() bool {
return env.IsSet(EnvKMSSecretKey)
}
// List returns an array of local KMS Names
func (c *kesClient) List() []kes.KeyInfo {
var kmsSecret []kes.KeyInfo
envKMSSecretKey := env.Get(EnvKMSSecretKey, "")
values := strings.SplitN(envKMSSecretKey, ":", 2)
if len(values) == 2 {
kmsSecret = []kes.KeyInfo{
{
Name: values[0],
},
}
}
return kmsSecret
}
// Metrics retrieves server metrics in the Prometheus exposition format.
func (c *kesClient) Metrics(ctx context.Context) (kes.Metric, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.client.Metrics(ctx)
}
// Version retrieves version information
func (c *kesClient) Version(ctx context.Context) (string, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.client.Version(ctx)
}
// APIs retrieves a list of supported API endpoints
func (c *kesClient) APIs(ctx context.Context) ([]kes.API, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.client.APIs(ctx)
}
// CreateKey tries to create a new key at the KMS with the
// given key ID.
//
// If the a key with the same keyID already exists then
// CreateKey returns kes.ErrKeyExists.
func (c *kesClient) CreateKey(ctx context.Context, keyID string) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.CreateKey(ctx, keyID)
}
// DeleteKey deletes a key at the KMS with the given key ID.
// Please note that is a dangerous operation.
// Once a key has been deleted all data that has been encrypted with it cannot be decrypted
// anymore, and therefore, is lost.
func (c *kesClient) DeleteKey(ctx context.Context, keyID string) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DeleteKey(ctx, keyID)
}
// ListKeys List all key names that match the specified pattern. In particular,
// the pattern * lists all keys.
func (c *kesClient) ListKeys(ctx context.Context, pattern string) (*kes.KeyIterator, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.ListKeys(ctx, pattern)
}
// GenerateKey generates a new data encryption key using
// the key at the KES server referenced by the key ID.
//
// The default key ID will be used if keyID is empty.
//
// The context is associated and tied to the generated DEK.
// The same context must be provided when the generated
// key should be decrypted.
func (c *kesClient) GenerateKey(ctx context.Context, keyID string, cryptoCtx Context) (DEK, error) {
c.lock.RLock()
defer c.lock.RUnlock()
if keyID == "" {
keyID = c.defaultKeyID
}
ctxBytes, err := cryptoCtx.MarshalText()
if err != nil {
return DEK{}, err
}
dek, err := c.enclave.GenerateKey(ctx, keyID, ctxBytes)
if err != nil {
return DEK{}, err
}
return DEK{
KeyID: keyID,
Plaintext: dek.Plaintext,
Ciphertext: dek.Ciphertext,
}, nil
}
// ImportKey imports a cryptographic key into the KMS.
func (c *kesClient) ImportKey(ctx context.Context, keyID string, bytes []byte) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.ImportKey(ctx, keyID, bytes)
}
// EncryptKey Encrypts and authenticates a (small) plaintext with the cryptographic key
// The plaintext must not exceed 1 MB
func (c *kesClient) EncryptKey(keyID string, plaintext []byte, ctx Context) ([]byte, error) {
c.lock.RLock()
defer c.lock.RUnlock()
ctxBytes, err := ctx.MarshalText()
if err != nil {
return nil, err
}
return c.enclave.Encrypt(context.Background(), keyID, plaintext, ctxBytes)
}
// DecryptKey decrypts the ciphertext with the key at the KES
// server referenced by the key ID. The context must match the
// context value used to generate the ciphertext.
func (c *kesClient) DecryptKey(keyID string, ciphertext []byte, ctx Context) ([]byte, error) {
c.lock.RLock()
defer c.lock.RUnlock()
ctxBytes, err := ctx.MarshalText()
if err != nil {
return nil, err
}
return c.enclave.Decrypt(context.Background(), keyID, ciphertext, ctxBytes)
}
func (c *kesClient) DecryptAll(ctx context.Context, keyID string, ciphertexts [][]byte, contexts []Context) ([][]byte, error) {
c.lock.RLock()
defer c.lock.RUnlock()
if c.bulkAvailable {
CCPs := make([]kes.CCP, 0, len(ciphertexts))
for i := range ciphertexts {
bCtx, err := contexts[i].MarshalText()
if err != nil {
return nil, err
}
CCPs = append(CCPs, kes.CCP{
Ciphertext: ciphertexts[i],
Context: bCtx,
})
}
PCPs, err := c.enclave.DecryptAll(ctx, keyID, CCPs...)
if err != nil {
return nil, err
}
plaintexts := make([][]byte, 0, len(PCPs))
for _, p := range PCPs {
plaintexts = append(plaintexts, p.Plaintext)
}
return plaintexts, nil
}
plaintexts := make([][]byte, 0, len(ciphertexts))
for i := range ciphertexts {
ctxBytes, err := contexts[i].MarshalText()
if err != nil {
return nil, err
}
plaintext, err := c.enclave.Decrypt(ctx, keyID, ciphertexts[i], ctxBytes)
if err != nil {
return nil, err
}
plaintexts = append(plaintexts, plaintext)
}
return plaintexts, nil
}
// DescribePolicy describes a policy by returning its metadata.
// e.g. who created the policy at which point in time.
func (c *kesClient) DescribePolicy(ctx context.Context, policy string) (*kes.PolicyInfo, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DescribePolicy(ctx, policy)
}
// AssignPolicy assigns a policy to an identity.
// An identity can have at most one policy while the same policy can be assigned to multiple identities.
// The assigned policy defines which API calls this identity can perform.
// It's not possible to assign a policy to the admin identity.
// Further, an identity cannot assign a policy to itself.
func (c *kesClient) AssignPolicy(ctx context.Context, policy, identity string) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.AssignPolicy(ctx, policy, kes.Identity(identity))
}
// DeletePolicy deletes a policy from KMS.
// All identities that have been assigned to this policy will lose all authorization privileges.
func (c *kesClient) DeletePolicy(ctx context.Context, policy string) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DeletePolicy(ctx, policy)
}
// ListPolicies list all policy metadata that match the specified pattern.
// In particular, the pattern * lists all policy metadata.
func (c *kesClient) ListPolicies(ctx context.Context, pattern string) (*kes.PolicyIterator, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.ListPolicies(ctx, pattern)
}
// SetPolicy creates or updates a policy.
2022-10-04 13:05:09 -04:00
func (c *kesClient) SetPolicy(ctx context.Context, policy string, policyItem *kes.Policy) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.SetPolicy(ctx, policy, policyItem)
}
// GetPolicy gets a policy from KMS.
func (c *kesClient) GetPolicy(ctx context.Context, policy string) (*kes.Policy, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.GetPolicy(ctx, policy)
}
// DescribeIdentity describes an identity by returning its metadata.
// e.g. which policy is currently assigned and whether its an admin identity.
func (c *kesClient) DescribeIdentity(ctx context.Context, identity string) (*kes.IdentityInfo, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DescribeIdentity(ctx, kes.Identity(identity))
}
// DescribeSelfIdentity describes the identity issuing the request.
// It infers the identity from the TLS client certificate used to authenticate.
// It returns the identity and policy information for the client identity.
func (c *kesClient) DescribeSelfIdentity(ctx context.Context) (*kes.IdentityInfo, *kes.Policy, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DescribeSelf(ctx)
}
// DeleteIdentity deletes an identity from KMS.
// The client certificate that corresponds to the identity is no longer authorized to perform any API operations.
// The admin identity cannot be deleted.
func (c *kesClient) DeleteIdentity(ctx context.Context, identity string) error {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.DeleteIdentity(ctx, kes.Identity(identity))
}
// ListIdentities list all identity metadata that match the specified pattern.
// In particular, the pattern * lists all identity metadata.
func (c *kesClient) ListIdentities(ctx context.Context, pattern string) (*kes.IdentityIterator, error) {
c.lock.RLock()
defer c.lock.RUnlock()
return c.enclave.ListIdentities(ctx, pattern)
}
// Verify verifies all KMS endpoints and returns details
func (c *kesClient) Verify(ctx context.Context) []VerifyResult {
c.lock.RLock()
defer c.lock.RUnlock()
results := []VerifyResult{}
kmsContext := Context{"MinIO admin API": "ServerInfoHandler"} // Context for a test key operation
for _, endpoint := range c.client.Endpoints {
client := kes.Client{
Endpoints: []string{endpoint},
HTTPClient: c.client.HTTPClient,
}
// 1. Get stats for the KES instance
state, err := client.Status(ctx)
if err != nil {
results = append(results, VerifyResult{Status: "offline", Endpoint: endpoint})
continue
}
// 2. Generate a new key using the KMS.
kmsCtx, err := kmsContext.MarshalText()
if err != nil {
results = append(results, VerifyResult{Status: "offline", Endpoint: endpoint})
continue
}
result := VerifyResult{Status: "online", Endpoint: endpoint, Version: state.Version}
key, err := client.GenerateKey(ctx, env.Get(EnvKESKeyName, ""), kmsCtx)
if err != nil {
result.Encrypt = fmt.Sprintf("Encryption failed: %v", err)
} else {
result.Encrypt = "success"
}
// 3. Verify that we can indeed decrypt the (encrypted) key
decryptedKey, err := client.Decrypt(ctx, env.Get(EnvKESKeyName, ""), key.Ciphertext, kmsCtx)
switch {
case err != nil:
result.Decrypt = fmt.Sprintf("Decryption failed: %v", err)
case subtle.ConstantTimeCompare(key.Plaintext, decryptedKey) != 1:
result.Decrypt = "Decryption failed: decrypted key does not match generated key"
default:
result.Decrypt = "success"
}
results = append(results, result)
}
return results
}