minio/pkg/utils/crypto/sha1/sha1_sse3_amd64.asm

580 lines
13 KiB
NASM
Raw Normal View History

;---------------------
; https://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1
;
; License information:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This implementation notably advances the performance of SHA-1 algorithm compared to existing
; implementations. We are encouraging all projects utilizing SHA-1 to integrate this new fast
; implementation and are ready to help if issues or concerns arise (you are welcome to leave
; a comment or write an email to the authors). It is provided 'as is' and free for either
; commercial or non-commercial use.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code implements two interfaces of SHA-1 update function: 1) working on a single
; 64-byte block and 2) working on a buffer of multiple 64-bit blocks. Multiple blocks
; version of code is software pipelined and faster overall, it is a default. Assemble
; with -DINTEL_SHA1_SINGLEBLOCK to select single 64-byte block function interface.
;
; C++ prototypes of implemented functions are below:
;
; #ifndef INTEL_SHA1_SINGLEBLOCK
; // Updates 20-byte SHA-1 record in 'hash' for 'num_blocks' consequtive 64-byte blocks
; extern "C" void sha1_update_intel(int *hash, const char* input, size_t num_blocks );
; #else
; // Updates 20-byte SHA-1 record in 'hash' for one 64-byte block pointed by 'input'
; extern "C" void sha1_update_intel(int *hash, const char* input);
; #endif
;
; Function name 'sha1_update_intel' can be changed in the source or via macro:
; -DINTEL_SHA1_UPDATE_FUNCNAME=my_sha1_update_func_name
;
; It implements both UNIX(default) and Windows ABIs, use -DWIN_ABI on Windows
;
; Code checks CPU for SSSE3 support via CPUID feature flag (CPUID.1.ECX.SSSE3[bit 9]==1),
; and performs dispatch. Since in most cases the functionality on non-SSSE3 supporting CPUs
; is also required, the default (e.g. one being replaced) function can be provided for
; dispatch on such CPUs, the name of old function can be changed in the source or via macro:
; -DINTEL_SHA1_UPDATE_DEFAULT_DISPATCH=default_sha1_update_function_name
;
; Authors: Maxim Locktyukhin and Ronen Zohar at Intel.com
;
%ifndef INTEL_SHA1_UPDATE_DEFAULT_DISPATCH
;; can be replaced with a default SHA-1 update function name
%define INTEL_SHA1_UPDATE_DEFAULT_DISPATCH sha1_intel_non_ssse3_cpu_stub_
%else
extern INTEL_SHA1_UPDATE_DEFAULT_DISPATCH
%endif
;; provide alternative SHA-1 update function's name here
%ifndef INTEL_SHA1_UPDATE_FUNCNAME
%define INTEL_SHA1_UPDATE_FUNCNAME sha1_update_intel
%endif
global INTEL_SHA1_UPDATE_FUNCNAME
%ifndef INTEL_SHA1_SINGLEBLOCK
%assign multiblock 1
%else
%assign multiblock 0
%endif
bits 64
default rel
%ifdef WIN_ABI
%xdefine arg1 rcx
%xdefine arg2 rdx
%xdefine arg3 r8
%else
%xdefine arg1 rdi
%xdefine arg2 rsi
%xdefine arg3 rdx
%endif
%xdefine ctx arg1
%xdefine buf arg2
%xdefine cnt arg3
%macro REGALLOC 0
%xdefine A ecx
%xdefine B esi
%xdefine C edi
%xdefine D ebp
%xdefine E edx
%xdefine T1 eax
%xdefine T2 ebx
%endmacro
%xdefine K_BASE r8
%xdefine HASH_PTR r9
%xdefine BUFFER_PTR r10
%xdefine BUFFER_END r11
%xdefine W_TMP xmm0
%xdefine W_TMP2 xmm9
%xdefine W0 xmm1
%xdefine W4 xmm2
%xdefine W8 xmm3
%xdefine W12 xmm4
%xdefine W16 xmm5
%xdefine W20 xmm6
%xdefine W24 xmm7
%xdefine W28 xmm8
%xdefine XMM_SHUFB_BSWAP xmm10
;; we keep window of 64 w[i]+K pre-calculated values in a circular buffer
%xdefine WK(t) (rsp + (t & 15)*4)
;------------------------------------------------------------------------------
;
; macro implements SHA-1 function's body for single or several 64-byte blocks
; first param: function's name
; second param: =0 - function implements single 64-byte block hash
; =1 - function implements multiple64-byte blocks hash
; 3rd function's argument is a number, greater 0, of 64-byte blocks to calc hash for
;
%macro SHA1_VECTOR_ASM 2
align 4096
%1:
push rbx
push rbp
%ifdef WIN_ABI
push rdi
push rsi
%xdefine stack_size (16*4 + 16*5 + 8)
%else
%xdefine stack_size (16*4 + 8)
%endif
sub rsp, stack_size
%ifdef WIN_ABI
%xdefine xmm_save_base (rsp + 16*4)
xmm_mov [xmm_save_base + 0*16], xmm6
xmm_mov [xmm_save_base + 1*16], xmm7
xmm_mov [xmm_save_base + 2*16], xmm8
xmm_mov [xmm_save_base + 3*16], xmm9
xmm_mov [xmm_save_base + 4*16], xmm10
%endif
mov HASH_PTR, ctx
mov BUFFER_PTR, buf
%if (%2 == 1)
shl cnt, 6 ;; mul by 64
add cnt, buf
mov BUFFER_END, cnt
%endif
lea K_BASE, [K_XMM_AR]
xmm_mov XMM_SHUFB_BSWAP, [bswap_shufb_ctl]
SHA1_PIPELINED_MAIN_BODY %2
%ifdef WIN_ABI
xmm_mov xmm6, [xmm_save_base + 0*16]
xmm_mov xmm7, [xmm_save_base + 1*16]
xmm_mov xmm8, [xmm_save_base + 2*16]
xmm_mov xmm9, [xmm_save_base + 3*16]
xmm_mov xmm10,[xmm_save_base + 4*16]
%endif
add rsp, stack_size
%ifdef WIN_ABI
pop rsi
pop rdi
%endif
pop rbp
pop rbx
ret
%endmacro
;--------------------------------------------
; macro implements 80 rounds of SHA-1, for one 64-byte block or multiple blocks with s/w pipelining
; macro param: =0 - process single 64-byte block
; =1 - multiple blocks
;
%macro SHA1_PIPELINED_MAIN_BODY 1
REGALLOC
mov A, [HASH_PTR ]
mov B, [HASH_PTR+ 4]
mov C, [HASH_PTR+ 8]
mov D, [HASH_PTR+12]
mov E, [HASH_PTR+16]
%assign i 0
%rep W_PRECALC_AHEAD
W_PRECALC i
%assign i i+1
%endrep
%xdefine F F1
%if (%1 == 1) ;; code loops through more than one block
%%_loop:
cmp BUFFER_PTR, K_BASE ;; we use K_BASE value as a signal of a last block,
jne %%_begin ;; it is set below by: cmovae BUFFER_PTR, K_BASE
jmp %%_end
align 32
%%_begin:
%endif
RR A,B,C,D,E,0
RR D,E,A,B,C,2
RR B,C,D,E,A,4
RR E,A,B,C,D,6
RR C,D,E,A,B,8
RR A,B,C,D,E,10
RR D,E,A,B,C,12
RR B,C,D,E,A,14
RR E,A,B,C,D,16
RR C,D,E,A,B,18
%xdefine F F2
RR A,B,C,D,E,20
RR D,E,A,B,C,22
RR B,C,D,E,A,24
RR E,A,B,C,D,26
RR C,D,E,A,B,28
RR A,B,C,D,E,30
RR D,E,A,B,C,32
RR B,C,D,E,A,34
RR E,A,B,C,D,36
RR C,D,E,A,B,38
%xdefine F F3
RR A,B,C,D,E,40
RR D,E,A,B,C,42
RR B,C,D,E,A,44
RR E,A,B,C,D,46
RR C,D,E,A,B,48
RR A,B,C,D,E,50
RR D,E,A,B,C,52
RR B,C,D,E,A,54
RR E,A,B,C,D,56
RR C,D,E,A,B,58
%xdefine F F4
%if (%1 == 1) ;; if code loops through more than one block
add BUFFER_PTR, 64 ;; move to next 64-byte block
cmp BUFFER_PTR, BUFFER_END ;; check if current block is the last one
cmovae BUFFER_PTR, K_BASE ;; smart way to signal the last iteration
%else
%xdefine W_NO_TAIL_PRECALC 1 ;; no software pipelining for single block interface
%endif
RR A,B,C,D,E,60
RR D,E,A,B,C,62
RR B,C,D,E,A,64
RR E,A,B,C,D,66
RR C,D,E,A,B,68
RR A,B,C,D,E,70
RR D,E,A,B,C,72
RR B,C,D,E,A,74
RR E,A,B,C,D,76
RR C,D,E,A,B,78
UPDATE_HASH [HASH_PTR ],A
UPDATE_HASH [HASH_PTR+ 4],B
UPDATE_HASH [HASH_PTR+ 8],C
UPDATE_HASH [HASH_PTR+12],D
UPDATE_HASH [HASH_PTR+16],E
%if (%1 == 1)
jmp %%_loop
align 32
%%_end:
%endif
%xdefine W_NO_TAIL_PRECALC 0
%xdefine F %error
%endmacro
%macro F1 3
mov T1,%2
xor T1,%3
and T1,%1
xor T1,%3
%endmacro
%macro F2 3
mov T1,%3
xor T1,%2
xor T1,%1
%endmacro
%macro F3 3
mov T1,%2
mov T2,%1
or T1,%1
and T2,%2
and T1,%3
or T1,T2
%endmacro
%define F4 F2
%macro UPDATE_HASH 2
add %2, %1
mov %1, %2
%endmacro
%macro W_PRECALC 1
%xdefine i (%1)
%if (i < 20)
%xdefine K_XMM 0
%elif (i < 40)
%xdefine K_XMM 16
%elif (i < 60)
%xdefine K_XMM 32
%else
%xdefine K_XMM 48
%endif
%if (i<16 || (i>=80 && i<(80 + W_PRECALC_AHEAD)))
%if (W_NO_TAIL_PRECALC == 0)
%xdefine i ((%1) % 80) ;; pre-compute for the next iteration
%if (i == 0)
W_PRECALC_RESET
%endif
W_PRECALC_00_15
%endif
%elif (i < 32)
W_PRECALC_16_31
%elif (i < 80) ;; rounds 32-79
W_PRECALC_32_79
%endif
%endmacro
%macro W_PRECALC_RESET 0
%xdefine W W0
%xdefine W_minus_04 W4
%xdefine W_minus_08 W8
%xdefine W_minus_12 W12
%xdefine W_minus_16 W16
%xdefine W_minus_20 W20
%xdefine W_minus_24 W24
%xdefine W_minus_28 W28
%xdefine W_minus_32 W
%endmacro
%macro W_PRECALC_ROTATE 0
%xdefine W_minus_32 W_minus_28
%xdefine W_minus_28 W_minus_24
%xdefine W_minus_24 W_minus_20
%xdefine W_minus_20 W_minus_16
%xdefine W_minus_16 W_minus_12
%xdefine W_minus_12 W_minus_08
%xdefine W_minus_08 W_minus_04
%xdefine W_minus_04 W
%xdefine W W_minus_32
%endmacro
%xdefine W_PRECALC_AHEAD 16
%xdefine W_NO_TAIL_PRECALC 0
%xdefine xmm_mov movdqa
%macro W_PRECALC_00_15 0
;; message scheduling pre-compute for rounds 0-15
%if ((i & 3) == 0) ;; blended SSE and ALU instruction scheduling, 1 vector iteration per 4 rounds
movdqu W_TMP, [BUFFER_PTR + (i * 4)]
%elif ((i & 3) == 1)
pshufb W_TMP, XMM_SHUFB_BSWAP
movdqa W, W_TMP
%elif ((i & 3) == 2)
paddd W_TMP, [K_BASE]
%elif ((i & 3) == 3)
movdqa [WK(i&~3)], W_TMP
W_PRECALC_ROTATE
%endif
%endmacro
%macro W_PRECALC_16_31 0
;; message scheduling pre-compute for rounds 16-31
;; calculating last 32 w[i] values in 8 XMM registers
;; pre-calculate K+w[i] values and store to mem, for later load by ALU add instruction
;;
;; "brute force" vectorization for rounds 16-31 only due to w[i]->w[i-3] dependency
;;
%if ((i & 3) == 0) ;; blended SSE and ALU instruction scheduling, 1 vector iteration per 4 rounds
movdqa W, W_minus_12
palignr W, W_minus_16, 8 ;; w[i-14]
movdqa W_TMP, W_minus_04
psrldq W_TMP, 4 ;; w[i-3]
pxor W, W_minus_08
%elif ((i & 3) == 1)
pxor W_TMP, W_minus_16
pxor W, W_TMP
movdqa W_TMP2, W
movdqa W_TMP, W
pslldq W_TMP2, 12
%elif ((i & 3) == 2)
psrld W, 31
pslld W_TMP, 1
por W_TMP, W
movdqa W, W_TMP2
psrld W_TMP2, 30
pslld W, 2
%elif ((i & 3) == 3)
pxor W_TMP, W
pxor W_TMP, W_TMP2
movdqa W, W_TMP
paddd W_TMP, [K_BASE + K_XMM]
movdqa [WK(i&~3)],W_TMP
W_PRECALC_ROTATE
%endif
%endmacro
%macro W_PRECALC_32_79 0
;; in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16]) rol 1
;; instead we do equal: w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
;; allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
;;
%if ((i & 3) == 0) ;; blended SSE and ALU instruction scheduling, 1 vector iteration per 4 rounds
movdqa W_TMP, W_minus_04
pxor W, W_minus_28 ;; W is W_minus_32 before xor
palignr W_TMP, W_minus_08, 8
%elif ((i & 3) == 1)
pxor W, W_minus_16
pxor W, W_TMP
movdqa W_TMP, W
%elif ((i & 3) == 2)
psrld W, 30
pslld W_TMP, 2
por W_TMP, W
%elif ((i & 3) == 3)
movdqa W, W_TMP
paddd W_TMP, [K_BASE + K_XMM]
movdqa [WK(i&~3)],W_TMP
W_PRECALC_ROTATE
%endif
%endmacro
%macro RR 6 ;; RR does two rounds of SHA-1 back to back with W pre-calculation
;; TEMP = A
;; A = F( i, B, C, D ) + E + ROTATE_LEFT( A, 5 ) + W[i] + K(i)
;; C = ROTATE_LEFT( B, 30 )
;; D = C
;; E = D
;; B = TEMP
W_PRECALC (%6 + W_PRECALC_AHEAD)
F %2, %3, %4 ;; F returns result in T1
add %5, [WK(%6)]
rol %2, 30
mov T2, %1
add %4, [WK(%6 + 1)]
rol T2, 5
add %5, T1
W_PRECALC (%6 + W_PRECALC_AHEAD + 1)
add T2, %5
mov %5, T2
rol T2, 5
add %4, T2
F %1, %2, %3 ;; F returns result in T1
add %4, T1
rol %1, 30
;; write: %1, %2
;; rotate: %1<=%4, %2<=%5, %3<=%1, %4<=%2, %5<=%3
%endmacro
;;----------------------
section .data align=128
%xdefine K1 0x5a827999
%xdefine K2 0x6ed9eba1
%xdefine K3 0x8f1bbcdc
%xdefine K4 0xca62c1d6
align 128
K_XMM_AR:
DD K1, K1, K1, K1
DD K2, K2, K2, K2
DD K3, K3, K3, K3
DD K4, K4, K4, K4
align 16
bswap_shufb_ctl:
DD 00010203h
DD 04050607h
DD 08090a0bh
DD 0c0d0e0fh
;; dispatch pointer, points to the init routine for the first invocation
sha1_update_intel_dispatched:
DQ sha1_update_intel_init_
;;----------------------
section .text align=4096
SHA1_VECTOR_ASM sha1_update_intel_ssse3_, multiblock
align 32
sha1_update_intel_init_: ;; we get here with the first time invocation
call sha1_update_intel_dispacth_init_
INTEL_SHA1_UPDATE_FUNCNAME: ;; we get here after init
jmp qword [sha1_update_intel_dispatched]
;; CPUID feature flag based dispatch
sha1_update_intel_dispacth_init_:
push rax
push rbx
push rcx
push rdx
push rsi
lea rsi, [INTEL_SHA1_UPDATE_DEFAULT_DISPATCH]
mov eax, 1
cpuid
test ecx, 0200h ;; SSSE3 support, CPUID.1.ECX[bit 9]
jz _done
lea rsi, [sha1_update_intel_ssse3_]
_done:
mov [sha1_update_intel_dispatched], rsi
pop rsi
pop rdx
pop rcx
pop rbx
pop rax
ret
;;----------------------
;; in the case a default SHA-1 update function implementation was not provided
;; and code was invoked on a non-SSSE3 supporting CPU, dispatch handles this
;; failure in a safest way - jumps to the stub function with UD2 instruction below
sha1_intel_non_ssse3_cpu_stub_:
ud2 ;; in the case no default SHA-1 was provided non-SSSE3 CPUs safely fail here
ret
; END
;----------------------