minio/vendor/gopkg.in/mgo.v2/bson/bson.go

717 lines
22 KiB
Go
Raw Normal View History

2015-10-20 02:03:01 -04:00
// BSON library for Go
//
// Copyright (c) 2010-2012 - Gustavo Niemeyer <gustavo@niemeyer.net>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Package bson is an implementation of the BSON specification for Go:
//
// http://bsonspec.org
//
// It was created as part of the mgo MongoDB driver for Go, but is standalone
// and may be used on its own without the driver.
package bson
import (
"bytes"
"crypto/md5"
"crypto/rand"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"reflect"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
)
// --------------------------------------------------------------------------
// The public API.
// A value implementing the bson.Getter interface will have its GetBSON
// method called when the given value has to be marshalled, and the result
// of this method will be marshaled in place of the actual object.
//
// If GetBSON returns return a non-nil error, the marshalling procedure
// will stop and error out with the provided value.
type Getter interface {
GetBSON() (interface{}, error)
}
// A value implementing the bson.Setter interface will receive the BSON
// value via the SetBSON method during unmarshaling, and the object
// itself will not be changed as usual.
//
// If setting the value works, the method should return nil or alternatively
// bson.SetZero to set the respective field to its zero value (nil for
// pointer types). If SetBSON returns a value of type bson.TypeError, the
// BSON value will be omitted from a map or slice being decoded and the
// unmarshalling will continue. If it returns any other non-nil error, the
// unmarshalling procedure will stop and error out with the provided value.
//
// This interface is generally useful in pointer receivers, since the method
// will want to change the receiver. A type field that implements the Setter
// interface doesn't have to be a pointer, though.
//
// Unlike the usual behavior, unmarshalling onto a value that implements a
// Setter interface will NOT reset the value to its zero state. This allows
// the value to decide by itself how to be unmarshalled.
//
// For example:
//
// type MyString string
//
// func (s *MyString) SetBSON(raw bson.Raw) error {
// return raw.Unmarshal(s)
// }
//
type Setter interface {
SetBSON(raw Raw) error
}
// SetZero may be returned from a SetBSON method to have the value set to
// its respective zero value. When used in pointer values, this will set the
// field to nil rather than to the pre-allocated value.
var SetZero = errors.New("set to zero")
// M is a convenient alias for a map[string]interface{} map, useful for
// dealing with BSON in a native way. For instance:
//
// bson.M{"a": 1, "b": true}
//
// There's no special handling for this type in addition to what's done anyway
// for an equivalent map type. Elements in the map will be dumped in an
// undefined ordered. See also the bson.D type for an ordered alternative.
type M map[string]interface{}
// D represents a BSON document containing ordered elements. For example:
//
// bson.D{{"a", 1}, {"b", true}}
//
// In some situations, such as when creating indexes for MongoDB, the order in
// which the elements are defined is important. If the order is not important,
// using a map is generally more comfortable. See bson.M and bson.RawD.
type D []DocElem
// DocElem is an element of the bson.D document representation.
type DocElem struct {
Name string
Value interface{}
}
// Map returns a map out of the ordered element name/value pairs in d.
func (d D) Map() (m M) {
m = make(M, len(d))
for _, item := range d {
m[item.Name] = item.Value
}
return m
}
// The Raw type represents raw unprocessed BSON documents and elements.
// Kind is the kind of element as defined per the BSON specification, and
// Data is the raw unprocessed data for the respective element.
// Using this type it is possible to unmarshal or marshal values partially.
//
// Relevant documentation:
//
// http://bsonspec.org/#/specification
//
type Raw struct {
Kind byte
Data []byte
}
// RawD represents a BSON document containing raw unprocessed elements.
// This low-level representation may be useful when lazily processing
// documents of uncertain content, or when manipulating the raw content
// documents in general.
type RawD []RawDocElem
// See the RawD type.
type RawDocElem struct {
Name string
Value Raw
}
// ObjectId is a unique ID identifying a BSON value. It must be exactly 12 bytes
// long. MongoDB objects by default have such a property set in their "_id"
// property.
//
// http://www.mongodb.org/display/DOCS/Object+IDs
type ObjectId string
// ObjectIdHex returns an ObjectId from the provided hex representation.
// Calling this function with an invalid hex representation will
// cause a runtime panic. See the IsObjectIdHex function.
func ObjectIdHex(s string) ObjectId {
d, err := hex.DecodeString(s)
if err != nil || len(d) != 12 {
panic(fmt.Sprintf("Invalid input to ObjectIdHex: %q", s))
}
return ObjectId(d)
}
// IsObjectIdHex returns whether s is a valid hex representation of
// an ObjectId. See the ObjectIdHex function.
func IsObjectIdHex(s string) bool {
if len(s) != 24 {
return false
}
_, err := hex.DecodeString(s)
return err == nil
}
// objectIdCounter is atomically incremented when generating a new ObjectId
// using NewObjectId() function. It's used as a counter part of an id.
var objectIdCounter uint32 = readRandomUint32()
// readRandomUint32 returns a random objectIdCounter.
func readRandomUint32() uint32 {
var b [4]byte
_, err := io.ReadFull(rand.Reader, b[:])
if err != nil {
panic(fmt.Errorf("cannot read random object id: %v", err))
}
return uint32((uint32(b[0]) << 0) | (uint32(b[1]) << 8) | (uint32(b[2]) << 16) | (uint32(b[3]) << 24))
}
// machineId stores machine id generated once and used in subsequent calls
// to NewObjectId function.
var machineId = readMachineId()
// readMachineId generates and returns a machine id.
// If this function fails to get the hostname it will cause a runtime error.
func readMachineId() []byte {
var sum [3]byte
id := sum[:]
hostname, err1 := os.Hostname()
if err1 != nil {
_, err2 := io.ReadFull(rand.Reader, id)
if err2 != nil {
panic(fmt.Errorf("cannot get hostname: %v; %v", err1, err2))
}
return id
}
hw := md5.New()
hw.Write([]byte(hostname))
copy(id, hw.Sum(nil))
return id
}
// NewObjectId returns a new unique ObjectId.
func NewObjectId() ObjectId {
var b [12]byte
// Timestamp, 4 bytes, big endian
binary.BigEndian.PutUint32(b[:], uint32(time.Now().Unix()))
// Machine, first 3 bytes of md5(hostname)
b[4] = machineId[0]
b[5] = machineId[1]
b[6] = machineId[2]
// Pid, 2 bytes, specs don't specify endianness, but we use big endian.
pid := os.Getpid()
b[7] = byte(pid >> 8)
b[8] = byte(pid)
// Increment, 3 bytes, big endian
i := atomic.AddUint32(&objectIdCounter, 1)
b[9] = byte(i >> 16)
b[10] = byte(i >> 8)
b[11] = byte(i)
return ObjectId(b[:])
}
// NewObjectIdWithTime returns a dummy ObjectId with the timestamp part filled
// with the provided number of seconds from epoch UTC, and all other parts
// filled with zeroes. It's not safe to insert a document with an id generated
// by this method, it is useful only for queries to find documents with ids
// generated before or after the specified timestamp.
func NewObjectIdWithTime(t time.Time) ObjectId {
var b [12]byte
binary.BigEndian.PutUint32(b[:4], uint32(t.Unix()))
return ObjectId(string(b[:]))
}
// String returns a hex string representation of the id.
// Example: ObjectIdHex("4d88e15b60f486e428412dc9").
func (id ObjectId) String() string {
return fmt.Sprintf(`ObjectIdHex("%x")`, string(id))
}
// Hex returns a hex representation of the ObjectId.
func (id ObjectId) Hex() string {
return hex.EncodeToString([]byte(id))
}
// MarshalJSON turns a bson.ObjectId into a json.Marshaller.
func (id ObjectId) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%x"`, string(id))), nil
}
var nullBytes = []byte("null")
// UnmarshalJSON turns *bson.ObjectId into a json.Unmarshaller.
func (id *ObjectId) UnmarshalJSON(data []byte) error {
if len(data) == 2 && data[0] == '"' && data[1] == '"' || bytes.Equal(data, nullBytes) {
*id = ""
return nil
}
if len(data) != 26 || data[0] != '"' || data[25] != '"' {
return errors.New(fmt.Sprintf("Invalid ObjectId in JSON: %s", string(data)))
}
var buf [12]byte
_, err := hex.Decode(buf[:], data[1:25])
if err != nil {
return errors.New(fmt.Sprintf("Invalid ObjectId in JSON: %s (%s)", string(data), err))
}
*id = ObjectId(string(buf[:]))
return nil
}
// Valid returns true if id is valid. A valid id must contain exactly 12 bytes.
func (id ObjectId) Valid() bool {
return len(id) == 12
}
// byteSlice returns byte slice of id from start to end.
// Calling this function with an invalid id will cause a runtime panic.
func (id ObjectId) byteSlice(start, end int) []byte {
if len(id) != 12 {
panic(fmt.Sprintf("Invalid ObjectId: %q", string(id)))
}
return []byte(string(id)[start:end])
}
// Time returns the timestamp part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ObjectId) Time() time.Time {
// First 4 bytes of ObjectId is 32-bit big-endian seconds from epoch.
secs := int64(binary.BigEndian.Uint32(id.byteSlice(0, 4)))
return time.Unix(secs, 0)
}
// Machine returns the 3-byte machine id part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ObjectId) Machine() []byte {
return id.byteSlice(4, 7)
}
// Pid returns the process id part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ObjectId) Pid() uint16 {
return binary.BigEndian.Uint16(id.byteSlice(7, 9))
}
// Counter returns the incrementing value part of the id.
// It's a runtime error to call this method with an invalid id.
func (id ObjectId) Counter() int32 {
b := id.byteSlice(9, 12)
// Counter is stored as big-endian 3-byte value
return int32(uint32(b[0])<<16 | uint32(b[1])<<8 | uint32(b[2]))
}
// The Symbol type is similar to a string and is used in languages with a
// distinct symbol type.
type Symbol string
// Now returns the current time with millisecond precision. MongoDB stores
// timestamps with the same precision, so a Time returned from this method
// will not change after a roundtrip to the database. That's the only reason
// why this function exists. Using the time.Now function also works fine
// otherwise.
func Now() time.Time {
return time.Unix(0, time.Now().UnixNano()/1e6*1e6)
}
// MongoTimestamp is a special internal type used by MongoDB that for some
// strange reason has its own datatype defined in BSON.
type MongoTimestamp int64
type orderKey int64
// MaxKey is a special value that compares higher than all other possible BSON
// values in a MongoDB database.
var MaxKey = orderKey(1<<63 - 1)
// MinKey is a special value that compares lower than all other possible BSON
// values in a MongoDB database.
var MinKey = orderKey(-1 << 63)
type undefined struct{}
// Undefined represents the undefined BSON value.
var Undefined undefined
// Binary is a representation for non-standard binary values. Any kind should
// work, but the following are known as of this writing:
//
// 0x00 - Generic. This is decoded as []byte(data), not Binary{0x00, data}.
// 0x01 - Function (!?)
// 0x02 - Obsolete generic.
// 0x03 - UUID
// 0x05 - MD5
// 0x80 - User defined.
//
type Binary struct {
Kind byte
Data []byte
}
// RegEx represents a regular expression. The Options field may contain
// individual characters defining the way in which the pattern should be
// applied, and must be sorted. Valid options as of this writing are 'i' for
// case insensitive matching, 'm' for multi-line matching, 'x' for verbose
// mode, 'l' to make \w, \W, and similar be locale-dependent, 's' for dot-all
// mode (a '.' matches everything), and 'u' to make \w, \W, and similar match
// unicode. The value of the Options parameter is not verified before being
// marshaled into the BSON format.
type RegEx struct {
Pattern string
Options string
}
// JavaScript is a type that holds JavaScript code. If Scope is non-nil, it
// will be marshaled as a mapping from identifiers to values that may be
// used when evaluating the provided Code.
type JavaScript struct {
Code string
Scope interface{}
}
// DBPointer refers to a document id in a namespace.
//
// This type is deprecated in the BSON specification and should not be used
// except for backwards compatibility with ancient applications.
type DBPointer struct {
Namespace string
Id ObjectId
}
const initialBufferSize = 64
func handleErr(err *error) {
if r := recover(); r != nil {
if _, ok := r.(runtime.Error); ok {
panic(r)
} else if _, ok := r.(externalPanic); ok {
panic(r)
} else if s, ok := r.(string); ok {
*err = errors.New(s)
} else if e, ok := r.(error); ok {
*err = e
} else {
panic(r)
}
}
}
// Marshal serializes the in value, which may be a map or a struct value.
// In the case of struct values, only exported fields will be serialized,
// and the order of serialized fields will match that of the struct itself.
// The lowercased field name is used as the key for each exported field,
// but this behavior may be changed using the respective field tag.
// The tag may also contain flags to tweak the marshalling behavior for
// the field. The tag formats accepted are:
//
// "[<key>][,<flag1>[,<flag2>]]"
//
// `(...) bson:"[<key>][,<flag1>[,<flag2>]]" (...)`
//
// The following flags are currently supported:
//
// omitempty Only include the field if it's not set to the zero
// value for the type or to empty slices or maps.
//
// minsize Marshal an int64 value as an int32, if that's feasible
// while preserving the numeric value.
//
// inline Inline the field, which must be a struct or a map,
// causing all of its fields or keys to be processed as if
// they were part of the outer struct. For maps, keys must
// not conflict with the bson keys of other struct fields.
//
// Some examples:
//
// type T struct {
// A bool
// B int "myb"
// C string "myc,omitempty"
// D string `bson:",omitempty" json:"jsonkey"`
// E int64 ",minsize"
// F int64 "myf,omitempty,minsize"
// }
//
func Marshal(in interface{}) (out []byte, err error) {
defer handleErr(&err)
e := &encoder{make([]byte, 0, initialBufferSize)}
e.addDoc(reflect.ValueOf(in))
return e.out, nil
}
// Unmarshal deserializes data from in into the out value. The out value
// must be a map, a pointer to a struct, or a pointer to a bson.D value.
// The lowercased field name is used as the key for each exported field,
// but this behavior may be changed using the respective field tag.
// The tag may also contain flags to tweak the marshalling behavior for
// the field. The tag formats accepted are:
//
// "[<key>][,<flag1>[,<flag2>]]"
//
// `(...) bson:"[<key>][,<flag1>[,<flag2>]]" (...)`
//
// The following flags are currently supported during unmarshal (see the
// Marshal method for other flags):
//
// inline Inline the field, which must be a struct or a map.
// Inlined structs are handled as if its fields were part
// of the outer struct. An inlined map causes keys that do
// not match any other struct field to be inserted in the
// map rather than being discarded as usual.
//
// The target field or element types of out may not necessarily match
// the BSON values of the provided data. The following conversions are
// made automatically:
//
// - Numeric types are converted if at least the integer part of the
// value would be preserved correctly
// - Bools are converted to numeric types as 1 or 0
// - Numeric types are converted to bools as true if not 0 or false otherwise
// - Binary and string BSON data is converted to a string, array or byte slice
//
// If the value would not fit the type and cannot be converted, it's
// silently skipped.
//
// Pointer values are initialized when necessary.
func Unmarshal(in []byte, out interface{}) (err error) {
if raw, ok := out.(*Raw); ok {
raw.Kind = 3
raw.Data = in
return nil
}
defer handleErr(&err)
v := reflect.ValueOf(out)
switch v.Kind() {
case reflect.Ptr:
fallthrough
case reflect.Map:
d := newDecoder(in)
d.readDocTo(v)
case reflect.Struct:
return errors.New("Unmarshal can't deal with struct values. Use a pointer.")
default:
return errors.New("Unmarshal needs a map or a pointer to a struct.")
}
return nil
}
// Unmarshal deserializes raw into the out value. If the out value type
// is not compatible with raw, a *bson.TypeError is returned.
//
// See the Unmarshal function documentation for more details on the
// unmarshalling process.
func (raw Raw) Unmarshal(out interface{}) (err error) {
defer handleErr(&err)
v := reflect.ValueOf(out)
switch v.Kind() {
case reflect.Ptr:
v = v.Elem()
fallthrough
case reflect.Map:
d := newDecoder(raw.Data)
good := d.readElemTo(v, raw.Kind)
if !good {
return &TypeError{v.Type(), raw.Kind}
}
case reflect.Struct:
return errors.New("Raw Unmarshal can't deal with struct values. Use a pointer.")
default:
return errors.New("Raw Unmarshal needs a map or a valid pointer.")
}
return nil
}
type TypeError struct {
Type reflect.Type
Kind byte
}
func (e *TypeError) Error() string {
return fmt.Sprintf("BSON kind 0x%02x isn't compatible with type %s", e.Kind, e.Type.String())
}
// --------------------------------------------------------------------------
// Maintain a mapping of keys to structure field indexes
type structInfo struct {
FieldsMap map[string]fieldInfo
FieldsList []fieldInfo
InlineMap int
Zero reflect.Value
}
type fieldInfo struct {
Key string
Num int
OmitEmpty bool
MinSize bool
Inline []int
}
var structMap = make(map[reflect.Type]*structInfo)
var structMapMutex sync.RWMutex
type externalPanic string
func (e externalPanic) String() string {
return string(e)
}
func getStructInfo(st reflect.Type) (*structInfo, error) {
structMapMutex.RLock()
sinfo, found := structMap[st]
structMapMutex.RUnlock()
if found {
return sinfo, nil
}
n := st.NumField()
fieldsMap := make(map[string]fieldInfo)
fieldsList := make([]fieldInfo, 0, n)
inlineMap := -1
for i := 0; i != n; i++ {
field := st.Field(i)
if field.PkgPath != "" {
continue // Private field
}
info := fieldInfo{Num: i}
tag := field.Tag.Get("bson")
if tag == "" && strings.Index(string(field.Tag), ":") < 0 {
tag = string(field.Tag)
}
if tag == "-" {
continue
}
// XXX Drop this after a few releases.
if s := strings.Index(tag, "/"); s >= 0 {
recommend := tag[:s]
for _, c := range tag[s+1:] {
switch c {
case 'c':
recommend += ",omitempty"
case 's':
recommend += ",minsize"
default:
msg := fmt.Sprintf("Unsupported flag %q in tag %q of type %s", string([]byte{uint8(c)}), tag, st)
panic(externalPanic(msg))
}
}
msg := fmt.Sprintf("Replace tag %q in field %s of type %s by %q", tag, field.Name, st, recommend)
panic(externalPanic(msg))
}
inline := false
fields := strings.Split(tag, ",")
if len(fields) > 1 {
for _, flag := range fields[1:] {
switch flag {
case "omitempty":
info.OmitEmpty = true
case "minsize":
info.MinSize = true
case "inline":
inline = true
default:
msg := fmt.Sprintf("Unsupported flag %q in tag %q of type %s", flag, tag, st)
panic(externalPanic(msg))
}
}
tag = fields[0]
}
if inline {
switch field.Type.Kind() {
case reflect.Map:
if inlineMap >= 0 {
return nil, errors.New("Multiple ,inline maps in struct " + st.String())
}
if field.Type.Key() != reflect.TypeOf("") {
return nil, errors.New("Option ,inline needs a map with string keys in struct " + st.String())
}
inlineMap = info.Num
case reflect.Struct:
sinfo, err := getStructInfo(field.Type)
if err != nil {
return nil, err
}
for _, finfo := range sinfo.FieldsList {
if _, found := fieldsMap[finfo.Key]; found {
msg := "Duplicated key '" + finfo.Key + "' in struct " + st.String()
return nil, errors.New(msg)
}
if finfo.Inline == nil {
finfo.Inline = []int{i, finfo.Num}
} else {
finfo.Inline = append([]int{i}, finfo.Inline...)
}
fieldsMap[finfo.Key] = finfo
fieldsList = append(fieldsList, finfo)
}
default:
panic("Option ,inline needs a struct value or map field")
}
continue
}
if tag != "" {
info.Key = tag
} else {
info.Key = strings.ToLower(field.Name)
}
if _, found = fieldsMap[info.Key]; found {
msg := "Duplicated key '" + info.Key + "' in struct " + st.String()
return nil, errors.New(msg)
}
fieldsList = append(fieldsList, info)
fieldsMap[info.Key] = info
}
sinfo = &structInfo{
fieldsMap,
fieldsList,
inlineMap,
reflect.New(st).Elem(),
}
structMapMutex.Lock()
structMap[st] = sinfo
structMapMutex.Unlock()
return sinfo, nil
}