headscale/cmd/hi/stats.go
2025-07-28 11:15:53 +02:00

468 lines
12 KiB
Go

package main
import (
"context"
"encoding/json"
"fmt"
"log"
"sort"
"strings"
"sync"
"time"
"github.com/docker/docker/api/types"
"github.com/docker/docker/api/types/container"
"github.com/docker/docker/api/types/events"
"github.com/docker/docker/api/types/filters"
"github.com/docker/docker/client"
)
// ContainerStats represents statistics for a single container
type ContainerStats struct {
ContainerID string
ContainerName string
Stats []StatsSample
mutex sync.RWMutex
}
// StatsSample represents a single stats measurement
type StatsSample struct {
Timestamp time.Time
CPUUsage float64 // CPU usage percentage
MemoryMB float64 // Memory usage in MB
}
// StatsCollector manages collection of container statistics
type StatsCollector struct {
client *client.Client
containers map[string]*ContainerStats
stopChan chan struct{}
wg sync.WaitGroup
mutex sync.RWMutex
collectionStarted bool
}
// NewStatsCollector creates a new stats collector instance
func NewStatsCollector() (*StatsCollector, error) {
cli, err := createDockerClient()
if err != nil {
return nil, fmt.Errorf("failed to create Docker client: %w", err)
}
return &StatsCollector{
client: cli,
containers: make(map[string]*ContainerStats),
stopChan: make(chan struct{}),
}, nil
}
// StartCollection begins monitoring all containers and collecting stats for hs- and ts- containers with matching run ID
func (sc *StatsCollector) StartCollection(ctx context.Context, runID string, verbose bool) error {
sc.mutex.Lock()
defer sc.mutex.Unlock()
if sc.collectionStarted {
return fmt.Errorf("stats collection already started")
}
sc.collectionStarted = true
// Start monitoring existing containers
sc.wg.Add(1)
go sc.monitorExistingContainers(ctx, runID, verbose)
// Start Docker events monitoring for new containers
sc.wg.Add(1)
go sc.monitorDockerEvents(ctx, runID, verbose)
if verbose {
log.Printf("Started container monitoring for run ID %s", runID)
}
return nil
}
// StopCollection stops all stats collection
func (sc *StatsCollector) StopCollection() {
// Check if already stopped without holding lock
sc.mutex.RLock()
if !sc.collectionStarted {
sc.mutex.RUnlock()
return
}
sc.mutex.RUnlock()
// Signal stop to all goroutines
close(sc.stopChan)
// Wait for all goroutines to finish
sc.wg.Wait()
// Mark as stopped
sc.mutex.Lock()
sc.collectionStarted = false
sc.mutex.Unlock()
}
// monitorExistingContainers checks for existing containers that match our criteria
func (sc *StatsCollector) monitorExistingContainers(ctx context.Context, runID string, verbose bool) {
defer sc.wg.Done()
containers, err := sc.client.ContainerList(ctx, container.ListOptions{})
if err != nil {
if verbose {
log.Printf("Failed to list existing containers: %v", err)
}
return
}
for _, cont := range containers {
if sc.shouldMonitorContainer(cont, runID) {
sc.startStatsForContainer(ctx, cont.ID, cont.Names[0], verbose)
}
}
}
// monitorDockerEvents listens for container start events and begins monitoring relevant containers
func (sc *StatsCollector) monitorDockerEvents(ctx context.Context, runID string, verbose bool) {
defer sc.wg.Done()
filter := filters.NewArgs()
filter.Add("type", "container")
filter.Add("event", "start")
eventOptions := events.ListOptions{
Filters: filter,
}
events, errs := sc.client.Events(ctx, eventOptions)
for {
select {
case <-sc.stopChan:
return
case <-ctx.Done():
return
case event := <-events:
if event.Type == "container" && event.Action == "start" {
// Get container details
containerInfo, err := sc.client.ContainerInspect(ctx, event.ID)
if err != nil {
continue
}
// Convert to types.Container format for consistency
cont := types.Container{
ID: containerInfo.ID,
Names: []string{containerInfo.Name},
Labels: containerInfo.Config.Labels,
}
if sc.shouldMonitorContainer(cont, runID) {
sc.startStatsForContainer(ctx, cont.ID, cont.Names[0], verbose)
}
}
case err := <-errs:
if verbose {
log.Printf("Error in Docker events stream: %v", err)
}
return
}
}
}
// shouldMonitorContainer determines if a container should be monitored
func (sc *StatsCollector) shouldMonitorContainer(cont types.Container, runID string) bool {
// Check if it has the correct run ID label
if cont.Labels == nil || cont.Labels["hi.run-id"] != runID {
return false
}
// Check if it's an hs- or ts- container
for _, name := range cont.Names {
containerName := strings.TrimPrefix(name, "/")
if strings.HasPrefix(containerName, "hs-") || strings.HasPrefix(containerName, "ts-") {
return true
}
}
return false
}
// startStatsForContainer begins stats collection for a specific container
func (sc *StatsCollector) startStatsForContainer(ctx context.Context, containerID, containerName string, verbose bool) {
containerName = strings.TrimPrefix(containerName, "/")
sc.mutex.Lock()
// Check if we're already monitoring this container
if _, exists := sc.containers[containerID]; exists {
sc.mutex.Unlock()
return
}
sc.containers[containerID] = &ContainerStats{
ContainerID: containerID,
ContainerName: containerName,
Stats: make([]StatsSample, 0),
}
sc.mutex.Unlock()
if verbose {
log.Printf("Starting stats collection for container %s (%s)", containerName, containerID[:12])
}
sc.wg.Add(1)
go sc.collectStatsForContainer(ctx, containerID, verbose)
}
// collectStatsForContainer collects stats for a specific container using Docker API streaming
func (sc *StatsCollector) collectStatsForContainer(ctx context.Context, containerID string, verbose bool) {
defer sc.wg.Done()
// Use Docker API streaming stats - much more efficient than CLI
statsResponse, err := sc.client.ContainerStats(ctx, containerID, true)
if err != nil {
if verbose {
log.Printf("Failed to get stats stream for container %s: %v", containerID[:12], err)
}
return
}
defer statsResponse.Body.Close()
decoder := json.NewDecoder(statsResponse.Body)
var prevStats *container.Stats
for {
select {
case <-sc.stopChan:
return
case <-ctx.Done():
return
default:
var stats container.Stats
if err := decoder.Decode(&stats); err != nil {
// EOF is expected when container stops or stream ends
if err.Error() != "EOF" && verbose {
log.Printf("Failed to decode stats for container %s: %v", containerID[:12], err)
}
return
}
// Calculate CPU percentage (only if we have previous stats)
var cpuPercent float64
if prevStats != nil {
cpuPercent = calculateCPUPercent(prevStats, &stats)
}
// Calculate memory usage in MB
memoryMB := float64(stats.MemoryStats.Usage) / (1024 * 1024)
// Store the sample (skip first sample since CPU calculation needs previous stats)
if prevStats != nil {
// Get container stats reference without holding the main mutex
var containerStats *ContainerStats
var exists bool
sc.mutex.RLock()
containerStats, exists = sc.containers[containerID]
sc.mutex.RUnlock()
if exists && containerStats != nil {
containerStats.mutex.Lock()
containerStats.Stats = append(containerStats.Stats, StatsSample{
Timestamp: time.Now(),
CPUUsage: cpuPercent,
MemoryMB: memoryMB,
})
containerStats.mutex.Unlock()
}
}
// Save current stats for next iteration
prevStats = &stats
}
}
}
// calculateCPUPercent calculates CPU usage percentage from Docker stats
func calculateCPUPercent(prevStats, stats *container.Stats) float64 {
// CPU calculation based on Docker's implementation
cpuDelta := float64(stats.CPUStats.CPUUsage.TotalUsage) - float64(prevStats.CPUStats.CPUUsage.TotalUsage)
systemDelta := float64(stats.CPUStats.SystemUsage) - float64(prevStats.CPUStats.SystemUsage)
if systemDelta > 0 && cpuDelta >= 0 {
// Calculate CPU percentage: (container CPU delta / system CPU delta) * number of CPUs * 100
numCPUs := float64(len(stats.CPUStats.CPUUsage.PercpuUsage))
if numCPUs == 0 {
// Fallback: if PercpuUsage is not available, assume 1 CPU
numCPUs = 1.0
}
return (cpuDelta / systemDelta) * numCPUs * 100.0
}
return 0.0
}
// ContainerStatsSummary represents summary statistics for a container
type ContainerStatsSummary struct {
ContainerName string
SampleCount int
CPU StatsSummary
Memory StatsSummary
}
// MemoryViolation represents a container that exceeded the memory limit
type MemoryViolation struct {
ContainerName string
MaxMemoryMB float64
LimitMB float64
}
// StatsSummary represents min, max, and average for a metric
type StatsSummary struct {
Min float64
Max float64
Average float64
}
// GetSummary returns a summary of collected statistics
func (sc *StatsCollector) GetSummary() []ContainerStatsSummary {
// Take snapshot of container references without holding main lock long
sc.mutex.RLock()
containerRefs := make([]*ContainerStats, 0, len(sc.containers))
for _, containerStats := range sc.containers {
containerRefs = append(containerRefs, containerStats)
}
sc.mutex.RUnlock()
summaries := make([]ContainerStatsSummary, 0, len(containerRefs))
for _, containerStats := range containerRefs {
containerStats.mutex.RLock()
stats := make([]StatsSample, len(containerStats.Stats))
copy(stats, containerStats.Stats)
containerName := containerStats.ContainerName
containerStats.mutex.RUnlock()
if len(stats) == 0 {
continue
}
summary := ContainerStatsSummary{
ContainerName: containerName,
SampleCount: len(stats),
}
// Calculate CPU stats
cpuValues := make([]float64, len(stats))
memoryValues := make([]float64, len(stats))
for i, sample := range stats {
cpuValues[i] = sample.CPUUsage
memoryValues[i] = sample.MemoryMB
}
summary.CPU = calculateStatsSummary(cpuValues)
summary.Memory = calculateStatsSummary(memoryValues)
summaries = append(summaries, summary)
}
// Sort by container name for consistent output
sort.Slice(summaries, func(i, j int) bool {
return summaries[i].ContainerName < summaries[j].ContainerName
})
return summaries
}
// calculateStatsSummary calculates min, max, and average for a slice of values
func calculateStatsSummary(values []float64) StatsSummary {
if len(values) == 0 {
return StatsSummary{}
}
min := values[0]
max := values[0]
sum := 0.0
for _, value := range values {
if value < min {
min = value
}
if value > max {
max = value
}
sum += value
}
return StatsSummary{
Min: min,
Max: max,
Average: sum / float64(len(values)),
}
}
// PrintSummary prints the statistics summary to the console
func (sc *StatsCollector) PrintSummary() {
summaries := sc.GetSummary()
if len(summaries) == 0 {
log.Printf("No container statistics collected")
return
}
log.Printf("Container Resource Usage Summary:")
log.Printf("================================")
for _, summary := range summaries {
log.Printf("Container: %s (%d samples)", summary.ContainerName, summary.SampleCount)
log.Printf(" CPU Usage: Min: %6.2f%% Max: %6.2f%% Avg: %6.2f%%",
summary.CPU.Min, summary.CPU.Max, summary.CPU.Average)
log.Printf(" Memory Usage: Min: %6.1f MB Max: %6.1f MB Avg: %6.1f MB",
summary.Memory.Min, summary.Memory.Max, summary.Memory.Average)
log.Printf("")
}
}
// CheckMemoryLimits checks if any containers exceeded their memory limits
func (sc *StatsCollector) CheckMemoryLimits(hsLimitMB, tsLimitMB float64) []MemoryViolation {
if hsLimitMB <= 0 && tsLimitMB <= 0 {
return nil
}
summaries := sc.GetSummary()
var violations []MemoryViolation
for _, summary := range summaries {
var limitMB float64
if strings.HasPrefix(summary.ContainerName, "hs-") {
limitMB = hsLimitMB
} else if strings.HasPrefix(summary.ContainerName, "ts-") {
limitMB = tsLimitMB
} else {
continue // Skip containers that don't match our patterns
}
if limitMB > 0 && summary.Memory.Max > limitMB {
violations = append(violations, MemoryViolation{
ContainerName: summary.ContainerName,
MaxMemoryMB: summary.Memory.Max,
LimitMB: limitMB,
})
}
}
return violations
}
// PrintSummaryAndCheckLimits prints the statistics summary and returns memory violations if any
func (sc *StatsCollector) PrintSummaryAndCheckLimits(hsLimitMB, tsLimitMB float64) []MemoryViolation {
sc.PrintSummary()
return sc.CheckMemoryLimits(hsLimitMB, tsLimitMB)
}
// Close closes the stats collector and cleans up resources
func (sc *StatsCollector) Close() error {
sc.StopCollection()
return sc.client.Close()
}