move reminder of dns funcs to util

Signed-off-by: Kristoffer Dalby <kristoffer@tailscale.com>
This commit is contained in:
Kristoffer Dalby 2023-06-06 11:28:52 +02:00 committed by Kristoffer Dalby
parent d36336a572
commit c1218ad3c2
5 changed files with 245 additions and 262 deletions

View File

@ -192,7 +192,7 @@ func NewHeadscale(cfg *types.Config) (*Headscale, error) {
} }
if app.cfg.DNSConfig != nil && app.cfg.DNSConfig.Proxied { // if MagicDNS if app.cfg.DNSConfig != nil && app.cfg.DNSConfig.Proxied { // if MagicDNS
magicDNSDomains := generateMagicDNSRootDomains(app.cfg.IPPrefixes) magicDNSDomains := util.GenerateMagicDNSRootDomains(app.cfg.IPPrefixes)
// we might have routes already from Split DNS // we might have routes already from Split DNS
if app.cfg.DNSConfig.Routes == nil { if app.cfg.DNSConfig.Routes == nil {
app.cfg.DNSConfig.Routes = make(map[string][]*dnstype.Resolver) app.cfg.DNSConfig.Routes = make(map[string][]*dnstype.Resolver)

View File

@ -1,151 +0,0 @@
package hscontrol
import (
"fmt"
"net/netip"
"strings"
"go4.org/netipx"
"tailscale.com/util/dnsname"
)
const (
ByteSize = 8
)
const (
ipv4AddressLength = 32
ipv6AddressLength = 128
)
// generateMagicDNSRootDomains generates a list of DNS entries to be included in `Routes` in `MapResponse`.
// This list of reverse DNS entries instructs the OS on what subnets and domains the Tailscale embedded DNS
// server (listening in 100.100.100.100 udp/53) should be used for.
//
// Tailscale.com includes in the list:
// - the `BaseDomain` of the user
// - the reverse DNS entry for IPv6 (0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa., see below more on IPv6)
// - the reverse DNS entries for the IPv4 subnets covered by the user's `IPPrefix`.
// In the public SaaS this is [64-127].100.in-addr.arpa.
//
// The main purpose of this function is then generating the list of IPv4 entries. For the 100.64.0.0/10, this
// is clear, and could be hardcoded. But we are allowing any range as `IPPrefix`, so we need to find out the
// subnets when we have 172.16.0.0/16 (i.e., [0-255].16.172.in-addr.arpa.), or any other subnet.
//
// How IN-ADDR.ARPA domains work is defined in RFC1035 (section 3.5). Tailscale.com seems to adhere to this,
// and do not make use of RFC2317 ("Classless IN-ADDR.ARPA delegation") - hence generating the entries for the next
// class block only.
// From the netmask we can find out the wildcard bits (the bits that are not set in the netmask).
// This allows us to then calculate the subnets included in the subsequent class block and generate the entries.
func generateMagicDNSRootDomains(ipPrefixes []netip.Prefix) []dnsname.FQDN {
fqdns := make([]dnsname.FQDN, 0, len(ipPrefixes))
for _, ipPrefix := range ipPrefixes {
var generateDNSRoot func(netip.Prefix) []dnsname.FQDN
switch ipPrefix.Addr().BitLen() {
case ipv4AddressLength:
generateDNSRoot = generateIPv4DNSRootDomain
case ipv6AddressLength:
generateDNSRoot = generateIPv6DNSRootDomain
default:
panic(
fmt.Sprintf(
"unsupported IP version with address length %d",
ipPrefix.Addr().BitLen(),
),
)
}
fqdns = append(fqdns, generateDNSRoot(ipPrefix)...)
}
return fqdns
}
func generateIPv4DNSRootDomain(ipPrefix netip.Prefix) []dnsname.FQDN {
// Conversion to the std lib net.IPnet, a bit easier to operate
netRange := netipx.PrefixIPNet(ipPrefix)
maskBits, _ := netRange.Mask.Size()
// lastOctet is the last IP byte covered by the mask
lastOctet := maskBits / ByteSize
// wildcardBits is the number of bits not under the mask in the lastOctet
wildcardBits := ByteSize - maskBits%ByteSize
// min is the value in the lastOctet byte of the IP
// max is basically 2^wildcardBits - i.e., the value when all the wildcardBits are set to 1
min := uint(netRange.IP[lastOctet])
max := (min + 1<<uint(wildcardBits)) - 1
// here we generate the base domain (e.g., 100.in-addr.arpa., 16.172.in-addr.arpa., etc.)
rdnsSlice := []string{}
for i := lastOctet - 1; i >= 0; i-- {
rdnsSlice = append(rdnsSlice, fmt.Sprintf("%d", netRange.IP[i]))
}
rdnsSlice = append(rdnsSlice, "in-addr.arpa.")
rdnsBase := strings.Join(rdnsSlice, ".")
fqdns := make([]dnsname.FQDN, 0, max-min+1)
for i := min; i <= max; i++ {
fqdn, err := dnsname.ToFQDN(fmt.Sprintf("%d.%s", i, rdnsBase))
if err != nil {
continue
}
fqdns = append(fqdns, fqdn)
}
return fqdns
}
func generateIPv6DNSRootDomain(ipPrefix netip.Prefix) []dnsname.FQDN {
const nibbleLen = 4
maskBits, _ := netipx.PrefixIPNet(ipPrefix).Mask.Size()
expanded := ipPrefix.Addr().StringExpanded()
nibbleStr := strings.Map(func(r rune) rune {
if r == ':' {
return -1
}
return r
}, expanded)
// TODO?: that does not look the most efficient implementation,
// but the inputs are not so long as to cause problems,
// and from what I can see, the generateMagicDNSRootDomains
// function is called only once over the lifetime of a server process.
prefixConstantParts := []string{}
for i := 0; i < maskBits/nibbleLen; i++ {
prefixConstantParts = append(
[]string{string(nibbleStr[i])},
prefixConstantParts...)
}
makeDomain := func(variablePrefix ...string) (dnsname.FQDN, error) {
prefix := strings.Join(append(variablePrefix, prefixConstantParts...), ".")
return dnsname.ToFQDN(fmt.Sprintf("%s.ip6.arpa", prefix))
}
var fqdns []dnsname.FQDN
if maskBits%4 == 0 {
dom, _ := makeDomain()
fqdns = append(fqdns, dom)
} else {
domCount := 1 << (maskBits % nibbleLen)
fqdns = make([]dnsname.FQDN, 0, domCount)
for i := 0; i < domCount; i++ {
varNibble := fmt.Sprintf("%x", i)
dom, err := makeDomain(varNibble)
if err != nil {
continue
}
fqdns = append(fqdns, dom)
}
}
return fqdns
}

View File

@ -1,109 +0,0 @@
package hscontrol
import (
"net/netip"
"gopkg.in/check.v1"
)
func (s *Suite) TestMagicDNSRootDomains100(c *check.C) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("100.64.0.0/10"),
}
domains := generateMagicDNSRootDomains(prefixes)
found := false
for _, domain := range domains {
if domain == "64.100.in-addr.arpa." {
found = true
break
}
}
c.Assert(found, check.Equals, true)
found = false
for _, domain := range domains {
if domain == "100.100.in-addr.arpa." {
found = true
break
}
}
c.Assert(found, check.Equals, true)
found = false
for _, domain := range domains {
if domain == "127.100.in-addr.arpa." {
found = true
break
}
}
c.Assert(found, check.Equals, true)
}
func (s *Suite) TestMagicDNSRootDomains172(c *check.C) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("172.16.0.0/16"),
}
domains := generateMagicDNSRootDomains(prefixes)
found := false
for _, domain := range domains {
if domain == "0.16.172.in-addr.arpa." {
found = true
break
}
}
c.Assert(found, check.Equals, true)
found = false
for _, domain := range domains {
if domain == "255.16.172.in-addr.arpa." {
found = true
break
}
}
c.Assert(found, check.Equals, true)
}
// Happens when netmask is a multiple of 4 bits (sounds likely).
func (s *Suite) TestMagicDNSRootDomainsIPv6Single(c *check.C) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("fd7a:115c:a1e0::/48"),
}
domains := generateMagicDNSRootDomains(prefixes)
c.Assert(len(domains), check.Equals, 1)
c.Assert(
domains[0].WithTrailingDot(),
check.Equals,
"0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa.",
)
}
func (s *Suite) TestMagicDNSRootDomainsIPv6SingleMultiple(c *check.C) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("fd7a:115c:a1e0::/50"),
}
domains := generateMagicDNSRootDomains(prefixes)
yieldsRoot := func(dom string) bool {
for _, candidate := range domains {
if candidate.WithTrailingDot() == dom {
return true
}
}
return false
}
c.Assert(len(domains), check.Equals, 4)
c.Assert(yieldsRoot("0.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."), check.Equals, true)
c.Assert(yieldsRoot("1.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."), check.Equals, true)
c.Assert(yieldsRoot("2.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."), check.Equals, true)
c.Assert(yieldsRoot("3.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."), check.Equals, true)
}

View File

@ -3,11 +3,19 @@ package util
import ( import (
"errors" "errors"
"fmt" "fmt"
"net/netip"
"regexp" "regexp"
"strings" "strings"
"go4.org/netipx"
"tailscale.com/util/dnsname"
) )
const ( const (
ByteSize = 8
ipv4AddressLength = 32
ipv6AddressLength = 128
// value related to RFC 1123 and 952. // value related to RFC 1123 and 952.
LabelHostnameLength = 63 LabelHostnameLength = 63
) )
@ -67,3 +75,135 @@ func CheckForFQDNRules(name string) error {
return nil return nil
} }
// generateMagicDNSRootDomains generates a list of DNS entries to be included in `Routes` in `MapResponse`.
// This list of reverse DNS entries instructs the OS on what subnets and domains the Tailscale embedded DNS
// server (listening in 100.100.100.100 udp/53) should be used for.
//
// Tailscale.com includes in the list:
// - the `BaseDomain` of the user
// - the reverse DNS entry for IPv6 (0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa., see below more on IPv6)
// - the reverse DNS entries for the IPv4 subnets covered by the user's `IPPrefix`.
// In the public SaaS this is [64-127].100.in-addr.arpa.
//
// The main purpose of this function is then generating the list of IPv4 entries. For the 100.64.0.0/10, this
// is clear, and could be hardcoded. But we are allowing any range as `IPPrefix`, so we need to find out the
// subnets when we have 172.16.0.0/16 (i.e., [0-255].16.172.in-addr.arpa.), or any other subnet.
//
// How IN-ADDR.ARPA domains work is defined in RFC1035 (section 3.5). Tailscale.com seems to adhere to this,
// and do not make use of RFC2317 ("Classless IN-ADDR.ARPA delegation") - hence generating the entries for the next
// class block only.
// From the netmask we can find out the wildcard bits (the bits that are not set in the netmask).
// This allows us to then calculate the subnets included in the subsequent class block and generate the entries.
func GenerateMagicDNSRootDomains(ipPrefixes []netip.Prefix) []dnsname.FQDN {
fqdns := make([]dnsname.FQDN, 0, len(ipPrefixes))
for _, ipPrefix := range ipPrefixes {
var generateDNSRoot func(netip.Prefix) []dnsname.FQDN
switch ipPrefix.Addr().BitLen() {
case ipv4AddressLength:
generateDNSRoot = generateIPv4DNSRootDomain
case ipv6AddressLength:
generateDNSRoot = generateIPv6DNSRootDomain
default:
panic(
fmt.Sprintf(
"unsupported IP version with address length %d",
ipPrefix.Addr().BitLen(),
),
)
}
fqdns = append(fqdns, generateDNSRoot(ipPrefix)...)
}
return fqdns
}
func generateIPv4DNSRootDomain(ipPrefix netip.Prefix) []dnsname.FQDN {
// Conversion to the std lib net.IPnet, a bit easier to operate
netRange := netipx.PrefixIPNet(ipPrefix)
maskBits, _ := netRange.Mask.Size()
// lastOctet is the last IP byte covered by the mask
lastOctet := maskBits / ByteSize
// wildcardBits is the number of bits not under the mask in the lastOctet
wildcardBits := ByteSize - maskBits%ByteSize
// min is the value in the lastOctet byte of the IP
// max is basically 2^wildcardBits - i.e., the value when all the wildcardBits are set to 1
min := uint(netRange.IP[lastOctet])
max := (min + 1<<uint(wildcardBits)) - 1
// here we generate the base domain (e.g., 100.in-addr.arpa., 16.172.in-addr.arpa., etc.)
rdnsSlice := []string{}
for i := lastOctet - 1; i >= 0; i-- {
rdnsSlice = append(rdnsSlice, fmt.Sprintf("%d", netRange.IP[i]))
}
rdnsSlice = append(rdnsSlice, "in-addr.arpa.")
rdnsBase := strings.Join(rdnsSlice, ".")
fqdns := make([]dnsname.FQDN, 0, max-min+1)
for i := min; i <= max; i++ {
fqdn, err := dnsname.ToFQDN(fmt.Sprintf("%d.%s", i, rdnsBase))
if err != nil {
continue
}
fqdns = append(fqdns, fqdn)
}
return fqdns
}
func generateIPv6DNSRootDomain(ipPrefix netip.Prefix) []dnsname.FQDN {
const nibbleLen = 4
maskBits, _ := netipx.PrefixIPNet(ipPrefix).Mask.Size()
expanded := ipPrefix.Addr().StringExpanded()
nibbleStr := strings.Map(func(r rune) rune {
if r == ':' {
return -1
}
return r
}, expanded)
// TODO?: that does not look the most efficient implementation,
// but the inputs are not so long as to cause problems,
// and from what I can see, the generateMagicDNSRootDomains
// function is called only once over the lifetime of a server process.
prefixConstantParts := []string{}
for i := 0; i < maskBits/nibbleLen; i++ {
prefixConstantParts = append(
[]string{string(nibbleStr[i])},
prefixConstantParts...)
}
makeDomain := func(variablePrefix ...string) (dnsname.FQDN, error) {
prefix := strings.Join(append(variablePrefix, prefixConstantParts...), ".")
return dnsname.ToFQDN(fmt.Sprintf("%s.ip6.arpa", prefix))
}
var fqdns []dnsname.FQDN
if maskBits%4 == 0 {
dom, _ := makeDomain()
fqdns = append(fqdns, dom)
} else {
domCount := 1 << (maskBits % nibbleLen)
fqdns = make([]dnsname.FQDN, 0, domCount)
for i := 0; i < domCount; i++ {
varNibble := fmt.Sprintf("%x", i)
dom, err := makeDomain(varNibble)
if err != nil {
continue
}
fqdns = append(fqdns, dom)
}
}
return fqdns
}

View File

@ -1,6 +1,11 @@
package util package util
import "testing" import (
"net/netip"
"testing"
"github.com/stretchr/testify/assert"
)
func TestNormalizeToFQDNRules(t *testing.T) { func TestNormalizeToFQDNRules(t *testing.T) {
type args struct { type args struct {
@ -141,3 +146,101 @@ func TestCheckForFQDNRules(t *testing.T) {
}) })
} }
} }
func TestMagicDNSRootDomains100(t *testing.T) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("100.64.0.0/10"),
}
domains := GenerateMagicDNSRootDomains(prefixes)
found := false
for _, domain := range domains {
if domain == "64.100.in-addr.arpa." {
found = true
break
}
}
assert.True(t, found)
found = false
for _, domain := range domains {
if domain == "100.100.in-addr.arpa." {
found = true
break
}
}
assert.True(t, found)
found = false
for _, domain := range domains {
if domain == "127.100.in-addr.arpa." {
found = true
break
}
}
assert.True(t, found)
}
func TestMagicDNSRootDomains172(t *testing.T) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("172.16.0.0/16"),
}
domains := GenerateMagicDNSRootDomains(prefixes)
found := false
for _, domain := range domains {
if domain == "0.16.172.in-addr.arpa." {
found = true
break
}
}
assert.True(t, found)
found = false
for _, domain := range domains {
if domain == "255.16.172.in-addr.arpa." {
found = true
break
}
}
assert.True(t, found)
}
// Happens when netmask is a multiple of 4 bits (sounds likely).
func TestMagicDNSRootDomainsIPv6Single(t *testing.T) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("fd7a:115c:a1e0::/48"),
}
domains := GenerateMagicDNSRootDomains(prefixes)
assert.Len(t, domains, 1)
assert.Equal(t, "0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa.", domains[0].WithTrailingDot())
}
func TestMagicDNSRootDomainsIPv6SingleMultiple(t *testing.T) {
prefixes := []netip.Prefix{
netip.MustParsePrefix("fd7a:115c:a1e0::/50"),
}
domains := GenerateMagicDNSRootDomains(prefixes)
yieldsRoot := func(dom string) bool {
for _, candidate := range domains {
if candidate.WithTrailingDot() == dom {
return true
}
}
return false
}
assert.Len(t, domains, 4)
assert.True(t, yieldsRoot("0.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."))
assert.True(t, yieldsRoot("1.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."))
assert.True(t, yieldsRoot("2.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."))
assert.True(t, yieldsRoot("3.0.e.1.a.c.5.1.1.a.7.d.f.ip6.arpa."))
}