Ventoy/SQUASHFS/squashfs-tools-4.4/squashfs-tools/action.c

3267 lines
72 KiB
C

/*
* Create a squashfs filesystem. This is a highly compressed read only
* filesystem.
*
* Copyright (c) 2011, 2012, 2013, 2014
* Phillip Lougher <phillip@squashfs.org.uk>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2,
* or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* action.c
*/
#include <fcntl.h>
#include <dirent.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <pwd.h>
#include <grp.h>
#include <sys/wait.h>
#include <regex.h>
#include <limits.h>
#include <errno.h>
#include "squashfs_fs.h"
#include "mksquashfs.h"
#include "action.h"
#include "error.h"
#include "fnmatch_compat.h"
/*
* code to parse actions
*/
static char *cur_ptr, *source;
static struct action *fragment_spec = NULL;
static struct action *exclude_spec = NULL;
static struct action *empty_spec = NULL;
static struct action *move_spec = NULL;
static struct action *prune_spec = NULL;
static struct action *other_spec = NULL;
static int fragment_count = 0;
static int exclude_count = 0;
static int empty_count = 0;
static int move_count = 0;
static int prune_count = 0;
static int other_count = 0;
static struct action_entry *parsing_action;
static struct file_buffer *def_fragment = NULL;
static struct token_entry token_table[] = {
{ "(", TOK_OPEN_BRACKET, 1, },
{ ")", TOK_CLOSE_BRACKET, 1 },
{ "&&", TOK_AND, 2 },
{ "||", TOK_OR, 2 },
{ "!", TOK_NOT, 1 },
{ ",", TOK_COMMA, 1 },
{ "@", TOK_AT, 1},
{ " ", TOK_WHITE_SPACE, 1 },
{ "\t ", TOK_WHITE_SPACE, 1 },
{ "", -1, 0 }
};
static struct test_entry test_table[];
static struct action_entry action_table[];
static struct expr *parse_expr(int subexp);
extern char *pathname(struct dir_ent *);
extern char *subpathname(struct dir_ent *);
extern int read_file(char *filename, char *type, int (parse_line)(char *));
/*
* Lexical analyser
*/
#define STR_SIZE 256
static int get_token(char **string)
{
/* string buffer */
static char *str = NULL;
static int size = 0;
char *str_ptr;
int cur_size, i, quoted;
while (1) {
if (*cur_ptr == '\0')
return TOK_EOF;
for (i = 0; token_table[i].token != -1; i++)
if (strncmp(cur_ptr, token_table[i].string,
token_table[i].size) == 0)
break;
if (token_table[i].token != TOK_WHITE_SPACE)
break;
cur_ptr ++;
}
if (token_table[i].token != -1) {
cur_ptr += token_table[i].size;
return token_table[i].token;
}
/* string */
if(str == NULL) {
str = malloc(STR_SIZE);
if(str == NULL)
MEM_ERROR();
size = STR_SIZE;
}
/* Initialise string being read */
str_ptr = str;
cur_size = 0;
quoted = 0;
while(1) {
while(*cur_ptr == '"') {
cur_ptr ++;
quoted = !quoted;
}
if(*cur_ptr == '\0') {
/* inside quoted string EOF, otherwise end of string */
if(quoted)
return TOK_EOF;
else
break;
}
if(!quoted) {
for(i = 0; token_table[i].token != -1; i++)
if (strncmp(cur_ptr, token_table[i].string,
token_table[i].size) == 0)
break;
if (token_table[i].token != -1)
break;
}
if(*cur_ptr == '\\') {
cur_ptr ++;
if(*cur_ptr == '\0')
return TOK_EOF;
}
if(cur_size + 2 > size) {
char *tmp;
size = (cur_size + 1 + STR_SIZE) & ~(STR_SIZE - 1);
tmp = realloc(str, size);
if(tmp == NULL)
MEM_ERROR();
str_ptr = str_ptr - str + tmp;
str = tmp;
}
*str_ptr ++ = *cur_ptr ++;
cur_size ++;
}
*str_ptr = '\0';
*string = str;
return TOK_STRING;
}
static int peek_token(char **string)
{
char *saved = cur_ptr;
int token = get_token(string);
cur_ptr = saved;
return token;
}
/*
* Expression parser
*/
static void free_parse_tree(struct expr *expr)
{
if(expr->type == ATOM_TYPE) {
int i;
for(i = 0; i < expr->atom.test->args; i++)
free(expr->atom.argv[i]);
free(expr->atom.argv);
} else if (expr->type == UNARY_TYPE)
free_parse_tree(expr->unary_op.expr);
else {
free_parse_tree(expr->expr_op.lhs);
free_parse_tree(expr->expr_op.rhs);
}
free(expr);
}
static struct expr *create_expr(struct expr *lhs, int op, struct expr *rhs)
{
struct expr *expr;
if (rhs == NULL) {
free_parse_tree(lhs);
return NULL;
}
expr = malloc(sizeof(*expr));
if (expr == NULL)
MEM_ERROR();
expr->type = OP_TYPE;
expr->expr_op.lhs = lhs;
expr->expr_op.rhs = rhs;
expr->expr_op.op = op;
return expr;
}
static struct expr *create_unary_op(struct expr *lhs, int op)
{
struct expr *expr;
if (lhs == NULL)
return NULL;
expr = malloc(sizeof(*expr));
if (expr == NULL)
MEM_ERROR();
expr->type = UNARY_TYPE;
expr->unary_op.expr = lhs;
expr->unary_op.op = op;
return expr;
}
static struct expr *parse_test(char *name)
{
char *string, **argv = NULL;
int token, args = 0;
int i;
struct test_entry *test;
struct expr *expr;
for (i = 0; test_table[i].args != -1; i++)
if (strcmp(name, test_table[i].name) == 0)
break;
test = &test_table[i];
if (test->args == -1) {
SYNTAX_ERROR("Non-existent test \"%s\"\n", name);
return NULL;
}
if(parsing_action->type == EXCLUDE_ACTION && !test->exclude_ok) {
fprintf(stderr, "Failed to parse action \"%s\"\n", source);
fprintf(stderr, "Test \"%s\" cannot be used in exclude "
"actions\n", name);
fprintf(stderr, "Use prune action instead ...\n");
return NULL;
}
expr = malloc(sizeof(*expr));
if (expr == NULL)
MEM_ERROR();
expr->type = ATOM_TYPE;
expr->atom.test = test;
expr->atom.data = NULL;
/*
* If the test has no arguments, then go straight to checking if there's
* enough arguments
*/
token = peek_token(&string);
if (token != TOK_OPEN_BRACKET)
goto skip_args;
get_token(&string);
/*
* speculatively read all the arguments, and then see if the
* number of arguments read is the number expected, this handles
* tests with a variable number of arguments
*/
token = get_token(&string);
if (token == TOK_CLOSE_BRACKET)
goto skip_args;
while(1) {
if (token != TOK_STRING) {
SYNTAX_ERROR("Unexpected token \"%s\", expected "
"argument\n", TOK_TO_STR(token, string));
goto failed;
}
argv = realloc(argv, (args + 1) * sizeof(char *));
if (argv == NULL)
MEM_ERROR();
argv[args ++ ] = strdup(string);
token = get_token(&string);
if (token == TOK_CLOSE_BRACKET)
break;
if (token != TOK_COMMA) {
SYNTAX_ERROR("Unexpected token \"%s\", expected "
"\",\" or \")\"\n", TOK_TO_STR(token, string));
goto failed;
}
token = get_token(&string);
}
skip_args:
/*
* expected number of arguments?
*/
if(test->args != -2 && args != test->args) {
SYNTAX_ERROR("Unexpected number of arguments, expected %d, "
"got %d\n", test->args, args);
goto failed;
}
expr->atom.args = args;
expr->atom.argv = argv;
if (test->parse_args) {
int res = test->parse_args(test, &expr->atom);
if (res == 0)
goto failed;
}
return expr;
failed:
free(argv);
free(expr);
return NULL;
}
static struct expr *get_atom()
{
char *string;
int token = get_token(&string);
switch(token) {
case TOK_NOT:
return create_unary_op(get_atom(), token);
case TOK_OPEN_BRACKET:
return parse_expr(1);
case TOK_STRING:
return parse_test(string);
default:
SYNTAX_ERROR("Unexpected token \"%s\", expected test "
"operation, \"!\", or \"(\"\n",
TOK_TO_STR(token, string));
return NULL;
}
}
static struct expr *parse_expr(int subexp)
{
struct expr *expr = get_atom();
while (expr) {
char *string;
int op = get_token(&string);
if (op == TOK_EOF) {
if (subexp) {
free_parse_tree(expr);
SYNTAX_ERROR("Expected \"&&\", \"||\" or "
"\")\", got EOF\n");
return NULL;
}
break;
}
if (op == TOK_CLOSE_BRACKET) {
if (!subexp) {
free_parse_tree(expr);
SYNTAX_ERROR("Unexpected \")\", expected "
"\"&&\", \"!!\" or EOF\n");
return NULL;
}
break;
}
if (op != TOK_AND && op != TOK_OR) {
free_parse_tree(expr);
SYNTAX_ERROR("Unexpected token \"%s\", expected "
"\"&&\" or \"||\"\n", TOK_TO_STR(op, string));
return NULL;
}
expr = create_expr(expr, op, get_atom());
}
return expr;
}
/*
* Action parser
*/
int parse_action(char *s, int verbose)
{
char *string, **argv = NULL;
int i, token, args = 0;
struct expr *expr;
struct action_entry *action;
void *data = NULL;
struct action **spec_list;
int spec_count;
cur_ptr = source = s;
token = get_token(&string);
if (token != TOK_STRING) {
SYNTAX_ERROR("Unexpected token \"%s\", expected name\n",
TOK_TO_STR(token, string));
return 0;
}
for (i = 0; action_table[i].args != -1; i++)
if (strcmp(string, action_table[i].name) == 0)
break;
if (action_table[i].args == -1) {
SYNTAX_ERROR("Non-existent action \"%s\"\n", string);
return 0;
}
action = &action_table[i];
token = get_token(&string);
if (token == TOK_AT)
goto skip_args;
if (token != TOK_OPEN_BRACKET) {
SYNTAX_ERROR("Unexpected token \"%s\", expected \"(\"\n",
TOK_TO_STR(token, string));
goto failed;
}
/*
* speculatively read all the arguments, and then see if the
* number of arguments read is the number expected, this handles
* actions with a variable number of arguments
*/
token = get_token(&string);
if (token == TOK_CLOSE_BRACKET)
goto skip_args;
while (1) {
if (token != TOK_STRING) {
SYNTAX_ERROR("Unexpected token \"%s\", expected "
"argument\n", TOK_TO_STR(token, string));
goto failed;
}
argv = realloc(argv, (args + 1) * sizeof(char *));
if (argv == NULL)
MEM_ERROR();
argv[args ++] = strdup(string);
token = get_token(&string);
if (token == TOK_CLOSE_BRACKET)
break;
if (token != TOK_COMMA) {
SYNTAX_ERROR("Unexpected token \"%s\", expected "
"\",\" or \")\"\n", TOK_TO_STR(token, string));
goto failed;
}
token = get_token(&string);
}
skip_args:
/*
* expected number of arguments?
*/
if(action->args != -2 && args != action->args) {
SYNTAX_ERROR("Unexpected number of arguments, expected %d, "
"got %d\n", action->args, args);
goto failed;
}
if (action->parse_args) {
int res = action->parse_args(action, args, argv, &data);
if (res == 0)
goto failed;
}
if (token == TOK_CLOSE_BRACKET)
token = get_token(&string);
if (token != TOK_AT) {
SYNTAX_ERROR("Unexpected token \"%s\", expected \"@\"\n",
TOK_TO_STR(token, string));
goto failed;
}
parsing_action = action;
expr = parse_expr(0);
if (expr == NULL)
goto failed;
/*
* choose action list and increment action counter
*/
switch(action->type) {
case FRAGMENT_ACTION:
spec_count = fragment_count ++;
spec_list = &fragment_spec;
break;
case EXCLUDE_ACTION:
spec_count = exclude_count ++;
spec_list = &exclude_spec;
break;
case EMPTY_ACTION:
spec_count = empty_count ++;
spec_list = &empty_spec;
break;
case MOVE_ACTION:
spec_count = move_count ++;
spec_list = &move_spec;
break;
case PRUNE_ACTION:
spec_count = prune_count ++;
spec_list = &prune_spec;
break;
default:
spec_count = other_count ++;
spec_list = &other_spec;
}
*spec_list = realloc(*spec_list, (spec_count + 1) *
sizeof(struct action));
if (*spec_list == NULL)
MEM_ERROR();
(*spec_list)[spec_count].type = action->type;
(*spec_list)[spec_count].action = action;
(*spec_list)[spec_count].args = args;
(*spec_list)[spec_count].argv = argv;
(*spec_list)[spec_count].expr = expr;
(*spec_list)[spec_count].data = data;
(*spec_list)[spec_count].verbose = verbose;
return 1;
failed:
free(argv);
return 0;
}
/*
* Evaluate expressions
*/
#define ALLOC_SZ 128
#define LOG_ENABLE 0
#define LOG_DISABLE 1
#define LOG_PRINT 2
#define LOG_ENABLED 3
char *_expr_log(char *string, int cmnd)
{
static char *expr_msg = NULL;
static int cur_size = 0, alloc_size = 0;
int size;
switch(cmnd) {
case LOG_ENABLE:
expr_msg = malloc(ALLOC_SZ);
alloc_size = ALLOC_SZ;
cur_size = 0;
return expr_msg;
case LOG_DISABLE:
free(expr_msg);
alloc_size = cur_size = 0;
return expr_msg = NULL;
case LOG_ENABLED:
return expr_msg;
default:
if(expr_msg == NULL)
return NULL;
break;
}
/* if string is empty append '\0' */
size = strlen(string) ? : 1;
if(alloc_size - cur_size < size) {
/* buffer too small, expand */
alloc_size = (cur_size + size + ALLOC_SZ - 1) & ~(ALLOC_SZ - 1);
expr_msg = realloc(expr_msg, alloc_size);
if(expr_msg == NULL)
MEM_ERROR();
}
memcpy(expr_msg + cur_size, string, size);
cur_size += size;
return expr_msg;
}
char *expr_log_cmnd(int cmnd)
{
return _expr_log(NULL, cmnd);
}
char *expr_log(char *string)
{
return _expr_log(string, LOG_PRINT);
}
void expr_log_atom(struct atom *atom)
{
int i;
if(atom->test->handle_logging)
return;
expr_log(atom->test->name);
if(atom->args) {
expr_log("(");
for(i = 0; i < atom->args; i++) {
expr_log(atom->argv[i]);
if (i + 1 < atom->args)
expr_log(",");
}
expr_log(")");
}
}
void expr_log_match(int match)
{
if(match)
expr_log("=True");
else
expr_log("=False");
}
static int eval_expr_log(struct expr *expr, struct action_data *action_data)
{
int match;
switch (expr->type) {
case ATOM_TYPE:
expr_log_atom(&expr->atom);
match = expr->atom.test->fn(&expr->atom, action_data);
expr_log_match(match);
break;
case UNARY_TYPE:
expr_log("!");
match = !eval_expr_log(expr->unary_op.expr, action_data);
break;
default:
expr_log("(");
match = eval_expr_log(expr->expr_op.lhs, action_data);
if ((expr->expr_op.op == TOK_AND && match) ||
(expr->expr_op.op == TOK_OR && !match)) {
expr_log(token_table[expr->expr_op.op].string);
match = eval_expr_log(expr->expr_op.rhs, action_data);
}
expr_log(")");
break;
}
return match;
}
static int eval_expr(struct expr *expr, struct action_data *action_data)
{
int match;
switch (expr->type) {
case ATOM_TYPE:
match = expr->atom.test->fn(&expr->atom, action_data);
break;
case UNARY_TYPE:
match = !eval_expr(expr->unary_op.expr, action_data);
break;
default:
match = eval_expr(expr->expr_op.lhs, action_data);
if ((expr->expr_op.op == TOK_AND && match) ||
(expr->expr_op.op == TOK_OR && !match))
match = eval_expr(expr->expr_op.rhs, action_data);
break;
}
return match;
}
static int eval_expr_top(struct action *action, struct action_data *action_data)
{
if(action->verbose) {
int match, n;
expr_log_cmnd(LOG_ENABLE);
if(action_data->subpath)
expr_log(action_data->subpath);
expr_log("=");
expr_log(action->action->name);
if(action->args) {
expr_log("(");
for (n = 0; n < action->args; n++) {
expr_log(action->argv[n]);
if(n + 1 < action->args)
expr_log(",");
}
expr_log(")");
}
expr_log("@");
match = eval_expr_log(action->expr, action_data);
/*
* Print the evaluated expression log, if the
* result matches the logging specified
*/
if((match && (action->verbose & ACTION_LOG_TRUE)) || (!match
&& (action->verbose & ACTION_LOG_FALSE)))
progressbar_info("%s\n", expr_log(""));
expr_log_cmnd(LOG_DISABLE);
return match;
} else
return eval_expr(action->expr, action_data);
}
/*
* Read action file, passing each line to parse_action() for
* parsing.
*
* One action per line, of the form
* action(arg1,arg2)@expr(arg1,arg2)....
*
* Actions can be split across multiple lines using "\".
*
* Blank lines and comment lines indicated by # are supported.
*/
int parse_action_true(char *s)
{
return parse_action(s, ACTION_LOG_TRUE);
}
int parse_action_false(char *s)
{
return parse_action(s, ACTION_LOG_FALSE);
}
int parse_action_verbose(char *s)
{
return parse_action(s, ACTION_LOG_VERBOSE);
}
int parse_action_nonverbose(char *s)
{
return parse_action(s, ACTION_LOG_NONE);
}
int read_action_file(char *filename, int verbose)
{
switch(verbose) {
case ACTION_LOG_TRUE:
return read_file(filename, "action", parse_action_true);
case ACTION_LOG_FALSE:
return read_file(filename, "action", parse_action_false);
case ACTION_LOG_VERBOSE:
return read_file(filename, "action", parse_action_verbose);
default:
return read_file(filename, "action", parse_action_nonverbose);
}
}
/*
* helper to evaluate whether action/test acts on this file type
*/
static int file_type_match(int st_mode, int type)
{
switch(type) {
case ACTION_DIR:
return S_ISDIR(st_mode);
case ACTION_REG:
return S_ISREG(st_mode);
case ACTION_ALL:
return S_ISREG(st_mode) || S_ISDIR(st_mode) ||
S_ISCHR(st_mode) || S_ISBLK(st_mode) ||
S_ISFIFO(st_mode) || S_ISSOCK(st_mode);
case ACTION_LNK:
return S_ISLNK(st_mode);
case ACTION_ALL_LNK:
default:
return 1;
}
}
/*
* General action evaluation code
*/
int actions()
{
return other_count;
}
void eval_actions(struct dir_info *root, struct dir_ent *dir_ent)
{
int i, match;
struct action_data action_data;
int st_mode = dir_ent->inode->buf.st_mode;
action_data.name = dir_ent->name;
action_data.pathname = strdup(pathname(dir_ent));
action_data.subpath = strdup(subpathname(dir_ent));
action_data.buf = &dir_ent->inode->buf;
action_data.depth = dir_ent->our_dir->depth;
action_data.dir_ent = dir_ent;
action_data.root = root;
for (i = 0; i < other_count; i++) {
struct action *action = &other_spec[i];
if (!file_type_match(st_mode, action->action->file_types))
/* action does not operate on this file type */
continue;
match = eval_expr_top(action, &action_data);
if (match)
action->action->run_action(action, dir_ent);
}
free(action_data.pathname);
free(action_data.subpath);
}
/*
* Fragment specific action code
*/
void *eval_frag_actions(struct dir_info *root, struct dir_ent *dir_ent)
{
int i, match;
struct action_data action_data;
action_data.name = dir_ent->name;
action_data.pathname = strdup(pathname(dir_ent));
action_data.subpath = strdup(subpathname(dir_ent));
action_data.buf = &dir_ent->inode->buf;
action_data.depth = dir_ent->our_dir->depth;
action_data.dir_ent = dir_ent;
action_data.root = root;
for (i = 0; i < fragment_count; i++) {
match = eval_expr_top(&fragment_spec[i], &action_data);
if (match) {
free(action_data.pathname);
free(action_data.subpath);
return &fragment_spec[i].data;
}
}
free(action_data.pathname);
free(action_data.subpath);
return &def_fragment;
}
void *get_frag_action(void *fragment)
{
struct action *spec_list_end = &fragment_spec[fragment_count];
struct action *action;
if (fragment == NULL)
return &def_fragment;
if (fragment_count == 0)
return NULL;
if (fragment == &def_fragment)
action = &fragment_spec[0] - 1;
else
action = fragment - offsetof(struct action, data);
if (++action == spec_list_end)
return NULL;
return &action->data;
}
/*
* Exclude specific action code
*/
int exclude_actions()
{
return exclude_count;
}
int eval_exclude_actions(char *name, char *pathname, char *subpath,
struct stat *buf, int depth, struct dir_ent *dir_ent)
{
int i, match = 0;
struct action_data action_data;
action_data.name = name;
action_data.pathname = pathname;
action_data.subpath = subpath;
action_data.buf = buf;
action_data.depth = depth;
action_data.dir_ent = dir_ent;
for (i = 0; i < exclude_count && !match; i++)
match = eval_expr_top(&exclude_spec[i], &action_data);
return match;
}
/*
* Fragment specific action code
*/
static void frag_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->no_fragments = 0;
}
static void no_frag_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->no_fragments = 1;
}
static void always_frag_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->always_use_fragments = 1;
}
static void no_always_frag_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->always_use_fragments = 0;
}
/*
* Compression specific action code
*/
static void comp_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->noD = inode->noF = 0;
}
static void uncomp_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
inode->noD = inode->noF = 1;
}
/*
* Uid/gid specific action code
*/
static long long parse_uid(char *arg) {
char *b;
long long uid = strtoll(arg, &b, 10);
if (*b == '\0') {
if (uid < 0 || uid >= (1LL << 32)) {
SYNTAX_ERROR("Uid out of range\n");
return -1;
}
} else {
struct passwd *passwd = getpwnam(arg);
if (passwd)
uid = passwd->pw_uid;
else {
SYNTAX_ERROR("Invalid uid or unknown user\n");
return -1;
}
}
return uid;
}
static long long parse_gid(char *arg) {
char *b;
long long gid = strtoll(arg, &b, 10);
if (*b == '\0') {
if (gid < 0 || gid >= (1LL << 32)) {
SYNTAX_ERROR("Gid out of range\n");
return -1;
}
} else {
struct group *group = getgrnam(arg);
if (group)
gid = group->gr_gid;
else {
SYNTAX_ERROR("Invalid gid or unknown group\n");
return -1;
}
}
return gid;
}
static int parse_uid_args(struct action_entry *action, int args, char **argv,
void **data)
{
long long uid;
struct uid_info *uid_info;
uid = parse_uid(argv[0]);
if (uid == -1)
return 0;
uid_info = malloc(sizeof(struct uid_info));
if (uid_info == NULL)
MEM_ERROR();
uid_info->uid = uid;
*data = uid_info;
return 1;
}
static int parse_gid_args(struct action_entry *action, int args, char **argv,
void **data)
{
long long gid;
struct gid_info *gid_info;
gid = parse_gid(argv[0]);
if (gid == -1)
return 0;
gid_info = malloc(sizeof(struct gid_info));
if (gid_info == NULL)
MEM_ERROR();
gid_info->gid = gid;
*data = gid_info;
return 1;
}
static int parse_guid_args(struct action_entry *action, int args, char **argv,
void **data)
{
long long uid, gid;
struct guid_info *guid_info;
uid = parse_uid(argv[0]);
if (uid == -1)
return 0;
gid = parse_gid(argv[1]);
if (gid == -1)
return 0;
guid_info = malloc(sizeof(struct guid_info));
if (guid_info == NULL)
MEM_ERROR();
guid_info->uid = uid;
guid_info->gid = gid;
*data = guid_info;
return 1;
}
static void uid_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
struct uid_info *uid_info = action->data;
inode->buf.st_uid = uid_info->uid;
}
static void gid_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
struct gid_info *gid_info = action->data;
inode->buf.st_gid = gid_info->gid;
}
static void guid_action(struct action *action, struct dir_ent *dir_ent)
{
struct inode_info *inode = dir_ent->inode;
struct guid_info *guid_info = action->data;
inode->buf.st_uid = guid_info->uid;
inode->buf.st_gid = guid_info->gid;
}
/*
* Mode specific action code
*/
static int parse_octal_mode_args(int args, char **argv,
void **data)
{
int n, bytes;
unsigned int mode;
struct mode_data *mode_data;
/* octal mode number? */
n = sscanf(argv[0], "%o%n", &mode, &bytes);
if (n == 0)
return -1; /* not an octal number arg */
/* check there's no trailing junk */
if (argv[0][bytes] != '\0') {
SYNTAX_ERROR("Unexpected trailing bytes after octal "
"mode number\n");
return 0; /* bad octal number arg */
}
/* check there's only one argument */
if (args > 1) {
SYNTAX_ERROR("Octal mode number is first argument, "
"expected one argument, got %d\n", args);
return 0; /* bad octal number arg */
}
/* check mode is within range */
if (mode > 07777) {
SYNTAX_ERROR("Octal mode %o is out of range\n", mode);
return 0; /* bad octal number arg */
}
mode_data = malloc(sizeof(struct mode_data));
if (mode_data == NULL)
MEM_ERROR();
mode_data->operation = ACTION_MODE_OCT;
mode_data->mode = mode;
mode_data->next = NULL;
*data = mode_data;
return 1;
}
/*
* Parse symbolic mode of format [ugoa]*[[+-=]PERMS]+
* PERMS = [rwxXst]+ or [ugo]
*/
static int parse_sym_mode_arg(char *arg, struct mode_data **head,
struct mode_data **cur)
{
struct mode_data *mode_data;
int mode;
int mask = 0;
int op;
char X;
if (arg[0] != 'u' && arg[0] != 'g' && arg[0] != 'o' && arg[0] != 'a') {
/* no ownership specifiers, default to a */
mask = 0777;
goto parse_operation;
}
/* parse ownership specifiers */
while(1) {
switch(*arg) {
case 'u':
mask |= 04700;
break;
case 'g':
mask |= 02070;
break;
case 'o':
mask |= 01007;
break;
case 'a':
mask = 07777;
break;
default:
goto parse_operation;
}
arg ++;
}
parse_operation:
/* trap a symbolic mode with just an ownership specification */
if(*arg == '\0') {
SYNTAX_ERROR("Expected one of '+', '-' or '=', got EOF\n");
goto failed;
}
while(*arg != '\0') {
mode = 0;
X = 0;
switch(*arg) {
case '+':
op = ACTION_MODE_ADD;
break;
case '-':
op = ACTION_MODE_REM;
break;
case '=':
op = ACTION_MODE_SET;
break;
default:
SYNTAX_ERROR("Expected one of '+', '-' or '=', got "
"'%c'\n", *arg);
goto failed;
}
arg ++;
/* Parse PERMS */
if (*arg == 'u' || *arg == 'g' || *arg == 'o') {
/* PERMS = [ugo] */
mode = - *arg;
arg ++;
} else {
/* PERMS = [rwxXst]* */
while(1) {
switch(*arg) {
case 'r':
mode |= 0444;
break;
case 'w':
mode |= 0222;
break;
case 'x':
mode |= 0111;
break;
case 's':
mode |= 06000;
break;
case 't':
mode |= 01000;
break;
case 'X':
X = 1;
break;
case '+':
case '-':
case '=':
case '\0':
mode &= mask;
goto perms_parsed;
default:
SYNTAX_ERROR("Unrecognised permission "
"'%c'\n", *arg);
goto failed;
}
arg ++;
}
}
perms_parsed:
mode_data = malloc(sizeof(*mode_data));
if (mode_data == NULL)
MEM_ERROR();
mode_data->operation = op;
mode_data->mode = mode;
mode_data->mask = mask;
mode_data->X = X;
mode_data->next = NULL;
if (*cur) {
(*cur)->next = mode_data;
*cur = mode_data;
} else
*head = *cur = mode_data;
}
return 1;
failed:
return 0;
}
static int parse_sym_mode_args(struct action_entry *action, int args,
char **argv, void **data)
{
int i, res = 1;
struct mode_data *head = NULL, *cur = NULL;
for (i = 0; i < args && res; i++)
res = parse_sym_mode_arg(argv[i], &head, &cur);
*data = head;
return res;
}
static int parse_mode_args(struct action_entry *action, int args,
char **argv, void **data)
{
int res;
if (args == 0) {
SYNTAX_ERROR("Mode action expects one or more arguments\n");
return 0;
}
res = parse_octal_mode_args(args, argv, data);
if(res >= 0)
/* Got an octal mode argument */
return res;
else /* not an octal mode argument */
return parse_sym_mode_args(action, args, argv, data);
}
static int mode_execute(struct mode_data *mode_data, int st_mode)
{
int mode = 0;
for (;mode_data; mode_data = mode_data->next) {
if (mode_data->mode < 0) {
/* 'u', 'g' or 'o' */
switch(-mode_data->mode) {
case 'u':
mode = (st_mode >> 6) & 07;
break;
case 'g':
mode = (st_mode >> 3) & 07;
break;
case 'o':
mode = st_mode & 07;
break;
}
mode = ((mode << 6) | (mode << 3) | mode) &
mode_data->mask;
} else if (mode_data->X &&
((st_mode & S_IFMT) == S_IFDIR ||
(st_mode & 0111)))
/* X permission, only takes effect if inode is a
* directory or x is set for some owner */
mode = mode_data->mode | (0111 & mode_data->mask);
else
mode = mode_data->mode;
switch(mode_data->operation) {
case ACTION_MODE_OCT:
st_mode = (st_mode & S_IFMT) | mode;
break;
case ACTION_MODE_SET:
st_mode = (st_mode & ~mode_data->mask) | mode;
break;
case ACTION_MODE_ADD:
st_mode |= mode;
break;
case ACTION_MODE_REM:
st_mode &= ~mode;
}
}
return st_mode;
}
static void mode_action(struct action *action, struct dir_ent *dir_ent)
{
dir_ent->inode->buf.st_mode = mode_execute(action->data,
dir_ent->inode->buf.st_mode);
}
/*
* Empty specific action code
*/
int empty_actions()
{
return empty_count;
}
static int parse_empty_args(struct action_entry *action, int args,
char **argv, void **data)
{
struct empty_data *empty_data;
int val;
if (args >= 2) {
SYNTAX_ERROR("Empty action expects zero or one argument\n");
return 0;
}
if (args == 0 || strcmp(argv[0], "all") == 0)
val = EMPTY_ALL;
else if (strcmp(argv[0], "source") == 0)
val = EMPTY_SOURCE;
else if (strcmp(argv[0], "excluded") == 0)
val = EMPTY_EXCLUDED;
else {
SYNTAX_ERROR("Empty action expects zero arguments, or one"
"argument containing \"all\", \"source\", or \"excluded\""
"\n");
return 0;
}
empty_data = malloc(sizeof(*empty_data));
if (empty_data == NULL)
MEM_ERROR();
empty_data->val = val;
*data = empty_data;
return 1;
}
int eval_empty_actions(struct dir_info *root, struct dir_ent *dir_ent)
{
int i, match = 0;
struct action_data action_data;
struct empty_data *data;
struct dir_info *dir = dir_ent->dir;
/*
* Empty action only works on empty directories
*/
if (dir->count != 0)
return 0;
action_data.name = dir_ent->name;
action_data.pathname = strdup(pathname(dir_ent));
action_data.subpath = strdup(subpathname(dir_ent));
action_data.buf = &dir_ent->inode->buf;
action_data.depth = dir_ent->our_dir->depth;
action_data.dir_ent = dir_ent;
action_data.root = root;
for (i = 0; i < empty_count && !match; i++) {
data = empty_spec[i].data;
/*
* determine the cause of the empty directory and evaluate
* the empty action specified. Three empty actions:
* - EMPTY_SOURCE: empty action triggers only if the directory
* was originally empty, i.e directories that are empty
* only due to excluding are ignored.
* - EMPTY_EXCLUDED: empty action triggers only if the directory
* is empty because of excluding, i.e. directories that
* were originally empty are ignored.
* - EMPTY_ALL (the default): empty action triggers if the
* directory is empty, irrespective of the reason, i.e.
* the directory could have been originally empty or could
* be empty due to excluding.
*/
if ((data->val == EMPTY_EXCLUDED && !dir->excluded) ||
(data->val == EMPTY_SOURCE && dir->excluded))
continue;
match = eval_expr_top(&empty_spec[i], &action_data);
}
free(action_data.pathname);
free(action_data.subpath);
return match;
}
/*
* Move specific action code
*/
static struct move_ent *move_list = NULL;
int move_actions()
{
return move_count;
}
static char *move_pathname(struct move_ent *move)
{
struct dir_info *dest;
char *name, *pathname;
int res;
dest = (move->ops & ACTION_MOVE_MOVE) ?
move->dest : move->dir_ent->our_dir;
name = (move->ops & ACTION_MOVE_RENAME) ?
move->name : move->dir_ent->name;
if(dest->subpath[0] != '\0')
res = asprintf(&pathname, "%s/%s", dest->subpath, name);
else
res = asprintf(&pathname, "/%s", name);
if(res == -1)
BAD_ERROR("asprintf failed in move_pathname\n");
return pathname;
}
static char *get_comp(char **pathname)
{
char *path = *pathname, *start;
while(*path == '/')
path ++;
if(*path == '\0')
return NULL;
start = path;
while(*path != '/' && *path != '\0')
path ++;
*pathname = path;
return strndup(start, path - start);
}
static struct dir_ent *lookup_comp(char *comp, struct dir_info *dest)
{
struct dir_ent *dir_ent;
for(dir_ent = dest->list; dir_ent; dir_ent = dir_ent->next)
if(strcmp(comp, dir_ent->name) == 0)
break;
return dir_ent;
}
void eval_move(struct action_data *action_data, struct move_ent *move,
struct dir_info *root, struct dir_ent *dir_ent, char *pathname)
{
struct dir_info *dest, *source = dir_ent->our_dir;
struct dir_ent *comp_ent;
char *comp, *path = pathname;
/*
* Walk pathname to get the destination directory
*
* Like the mv command, if the last component exists and it
* is a directory, then move the file into that directory,
* otherwise, move the file into parent directory of the last
* component and rename to the last component.
*/
if (pathname[0] == '/')
/* absolute pathname, walk from root directory */
dest = root;
else
/* relative pathname, walk from current directory */
dest = source;
for(comp = get_comp(&pathname); comp; free(comp),
comp = get_comp(&pathname)) {
if (strcmp(comp, ".") == 0)
continue;
if (strcmp(comp, "..") == 0) {
/* if we're in the root directory then ignore */
if(dest->depth > 1)
dest = dest->dir_ent->our_dir;
continue;
}
/*
* Look up comp in current directory, if it exists and it is a
* directory continue walking the pathname, otherwise exit,
* we've walked as far as we can go, normally this is because
* we've arrived at the leaf component which we are going to
* rename source to
*/
comp_ent = lookup_comp(comp, dest);
if (comp_ent == NULL || (comp_ent->inode->buf.st_mode & S_IFMT)
!= S_IFDIR)
break;
dest = comp_ent->dir;
}
if(comp) {
/* Leaf component? If so we're renaming to this */
char *remainder = get_comp(&pathname);
free(remainder);
if(remainder) {
/*
* trying to move source to a subdirectory of
* comp, but comp either doesn't exist, or it isn't
* a directory, which is impossible
*/
if (comp_ent == NULL)
ERROR("Move action: cannot move %s to %s, no "
"such directory %s\n",
action_data->subpath, path, comp);
else
ERROR("Move action: cannot move %s to %s, %s "
"is not a directory\n",
action_data->subpath, path, comp);
free(comp);
return;
}
/*
* Multiple move actions triggering on one file can be merged
* if one is a RENAME and the other is a MOVE. Multiple RENAMEs
* can only merge if they're doing the same thing
*/
if(move->ops & ACTION_MOVE_RENAME) {
if(strcmp(comp, move->name) != 0) {
char *conf_path = move_pathname(move);
ERROR("Move action: Cannot move %s to %s, "
"conflicting move, already moving "
"to %s via another move action!\n",
action_data->subpath, path, conf_path);
free(conf_path);
free(comp);
return;
}
free(comp);
} else {
move->name = comp;
move->ops |= ACTION_MOVE_RENAME;
}
}
if(dest != source) {
/*
* Multiple move actions triggering on one file can be merged
* if one is a RENAME and the other is a MOVE. Multiple MOVEs
* can only merge if they're doing the same thing
*/
if(move->ops & ACTION_MOVE_MOVE) {
if(dest != move->dest) {
char *conf_path = move_pathname(move);
ERROR("Move action: Cannot move %s to %s, "
"conflicting move, already moving "
"to %s via another move action!\n",
action_data->subpath, path, conf_path);
free(conf_path);
return;
}
} else {
move->dest = dest;
move->ops |= ACTION_MOVE_MOVE;
}
}
}
static int subdirectory(struct dir_info *source, struct dir_info *dest)
{
if(source == NULL)
return 0;
return strlen(source->subpath) <= strlen(dest->subpath) &&
(dest->subpath[strlen(source->subpath)] == '/' ||
dest->subpath[strlen(source->subpath)] == '\0') &&
strncmp(source->subpath, dest->subpath,
strlen(source->subpath)) == 0;
}
void eval_move_actions(struct dir_info *root, struct dir_ent *dir_ent)
{
int i;
struct action_data action_data;
struct move_ent *move = NULL;
action_data.name = dir_ent->name;
action_data.pathname = strdup(pathname(dir_ent));
action_data.subpath = strdup(subpathname(dir_ent));
action_data.buf = &dir_ent->inode->buf;
action_data.depth = dir_ent->our_dir->depth;
action_data.dir_ent = dir_ent;
action_data.root = root;
/*
* Evaluate each move action against the current file. For any
* move actions that match don't actually perform the move now, but,
* store it, and execute all the stored move actions together once the
* directory scan is complete. This is done to ensure each separate
* move action does not nondeterministically interfere with other move
* actions. Each move action is considered to act independently, and
* each move action sees the directory tree in the same state.
*/
for (i = 0; i < move_count; i++) {
struct action *action = &move_spec[i];
int match = eval_expr_top(action, &action_data);
if(match) {
if(move == NULL) {
move = malloc(sizeof(*move));
if(move == NULL)
MEM_ERROR();
move->ops = 0;
move->dir_ent = dir_ent;
}
eval_move(&action_data, move, root, dir_ent,
action->argv[0]);
}
}
if(move) {
struct dir_ent *comp_ent;
struct dir_info *dest;
char *name;
/*
* Move contains the result of all triggered move actions.
* Check the destination doesn't already exist
*/
if(move->ops == 0) {
free(move);
goto finish;
}
dest = (move->ops & ACTION_MOVE_MOVE) ?
move->dest : dir_ent->our_dir;
name = (move->ops & ACTION_MOVE_RENAME) ?
move->name : dir_ent->name;
comp_ent = lookup_comp(name, dest);
if(comp_ent) {
char *conf_path = move_pathname(move);
ERROR("Move action: Cannot move %s to %s, "
"destination already exists\n",
action_data.subpath, conf_path);
free(conf_path);
free(move);
goto finish;
}
/*
* If we're moving a directory, check we're not moving it to a
* subdirectory of itself
*/
if(subdirectory(dir_ent->dir, dest)) {
char *conf_path = move_pathname(move);
ERROR("Move action: Cannot move %s to %s, this is a "
"subdirectory of itself\n",
action_data.subpath, conf_path);
free(conf_path);
free(move);
goto finish;
}
move->next = move_list;
move_list = move;
}
finish:
free(action_data.pathname);
free(action_data.subpath);
}
static void move_dir(struct dir_ent *dir_ent)
{
struct dir_info *dir = dir_ent->dir;
struct dir_ent *comp_ent;
/* update our directory's subpath name */
free(dir->subpath);
dir->subpath = strdup(subpathname(dir_ent));
/* recursively update the subpaths of any sub-directories */
for(comp_ent = dir->list; comp_ent; comp_ent = comp_ent->next)
if(comp_ent->dir)
move_dir(comp_ent);
}
static void move_file(struct move_ent *move_ent)
{
struct dir_ent *dir_ent = move_ent->dir_ent;
if(move_ent->ops & ACTION_MOVE_MOVE) {
struct dir_ent *comp_ent, *prev = NULL;
struct dir_info *source = dir_ent->our_dir,
*dest = move_ent->dest;
char *filename = pathname(dir_ent);
/*
* If we're moving a directory, check we're not moving it to a
* subdirectory of itself
*/
if(subdirectory(dir_ent->dir, dest)) {
char *conf_path = move_pathname(move_ent);
ERROR("Move action: Cannot move %s to %s, this is a "
"subdirectory of itself\n",
subpathname(dir_ent), conf_path);
free(conf_path);
return;
}
/* Remove the file from source directory */
for(comp_ent = source->list; comp_ent != dir_ent;
prev = comp_ent, comp_ent = comp_ent->next);
if(prev)
prev->next = comp_ent->next;
else
source->list = comp_ent->next;
source->count --;
if((comp_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
source->directory_count --;
/* Add the file to dest directory */
comp_ent->next = dest->list;
dest->list = comp_ent;
comp_ent->our_dir = dest;
dest->count ++;
if((comp_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
dest->directory_count ++;
/*
* We've moved the file, and so we can't now use the
* parent directory's pathname to calculate the pathname
*/
if(dir_ent->nonstandard_pathname == NULL) {
dir_ent->nonstandard_pathname = strdup(filename);
if(dir_ent->source_name) {
free(dir_ent->source_name);
dir_ent->source_name = NULL;
}
}
}
if(move_ent->ops & ACTION_MOVE_RENAME) {
/*
* If we're using name in conjunction with the parent
* directory's pathname to calculate the pathname, we need
* to use source_name to override. Otherwise it's already being
* over-ridden
*/
if(dir_ent->nonstandard_pathname == NULL &&
dir_ent->source_name == NULL)
dir_ent->source_name = dir_ent->name;
else
free(dir_ent->name);
dir_ent->name = move_ent->name;
}
if(dir_ent->dir)
/*
* dir_ent is a directory, and we have to recursively fix-up
* its subpath, and the subpaths of all of its sub-directories
*/
move_dir(dir_ent);
}
void do_move_actions()
{
while(move_list) {
struct move_ent *temp = move_list;
struct dir_info *dest = (move_list->ops & ACTION_MOVE_MOVE) ?
move_list->dest : move_list->dir_ent->our_dir;
char *name = (move_list->ops & ACTION_MOVE_RENAME) ?
move_list->name : move_list->dir_ent->name;
struct dir_ent *comp_ent = lookup_comp(name, dest);
if(comp_ent) {
char *conf_path = move_pathname(move_list);
ERROR("Move action: Cannot move %s to %s, "
"destination already exists\n",
subpathname(move_list->dir_ent), conf_path);
free(conf_path);
} else
move_file(move_list);
move_list = move_list->next;
free(temp);
}
}
/*
* Prune specific action code
*/
int prune_actions()
{
return prune_count;
}
int eval_prune_actions(struct dir_info *root, struct dir_ent *dir_ent)
{
int i, match = 0;
struct action_data action_data;
action_data.name = dir_ent->name;
action_data.pathname = strdup(pathname(dir_ent));
action_data.subpath = strdup(subpathname(dir_ent));
action_data.buf = &dir_ent->inode->buf;
action_data.depth = dir_ent->our_dir->depth;
action_data.dir_ent = dir_ent;
action_data.root = root;
for (i = 0; i < prune_count && !match; i++)
match = eval_expr_top(&prune_spec[i], &action_data);
free(action_data.pathname);
free(action_data.subpath);
return match;
}
/*
* Noop specific action code
*/
static void noop_action(struct action *action, struct dir_ent *dir_ent)
{
}
/*
* General test evaluation code
*/
/*
* A number can be of the form [range]number[size]
* [range] is either:
* '<' or '-', match on less than number
* '>' or '+', match on greater than number
* '' (nothing), match on exactly number
* [size] is either:
* '' (nothing), number
* 'k' or 'K', number * 2^10
* 'm' or 'M', number * 2^20
* 'g' or 'G', number * 2^30
*/
static int parse_number(char *start, long long *size, int *range, char **error)
{
char *end;
long long number;
if (*start == '>' || *start == '+') {
*range = NUM_GREATER;
start ++;
} else if (*start == '<' || *start == '-') {
*range = NUM_LESS;
start ++;
} else
*range = NUM_EQ;
errno = 0; /* To enable failure after call to be determined */
number = strtoll(start, &end, 10);
if((errno == ERANGE && (number == LLONG_MAX || number == LLONG_MIN))
|| (errno != 0 && number == 0)) {
/* long long underflow or overflow in conversion, or other
* conversion error.
* Note: we don't check for LLONG_MIN and LLONG_MAX only
* because strtoll can validly return that if the
* user used these values
*/
*error = "Long long underflow, overflow or other conversion "
"error";
return 0;
}
if (end == start) {
/* Couldn't read any number */
*error = "Number expected";
return 0;
}
switch (end[0]) {
case 'g':
case 'G':
number *= 1024;
case 'm':
case 'M':
number *= 1024;
case 'k':
case 'K':
number *= 1024;
if (end[1] != '\0') {
*error = "Trailing junk after size specifier";
return 0;
}
break;
case '\0':
break;
default:
*error = "Trailing junk after number";
return 0;
}
*size = number;
return 1;
}
static int parse_number_arg(struct test_entry *test, struct atom *atom)
{
struct test_number_arg *number;
long long size;
int range;
char *error;
int res = parse_number(atom->argv[0], &size, &range, &error);
if (res == 0) {
TEST_SYNTAX_ERROR(test, 0, "%s\n", error);
return 0;
}
number = malloc(sizeof(*number));
if (number == NULL)
MEM_ERROR();
number->range = range;
number->size = size;
atom->data = number;
return 1;
}
static int parse_range_args(struct test_entry *test, struct atom *atom)
{
struct test_range_args *range;
long long start, end;
int type;
int res;
char *error;
res = parse_number(atom->argv[0], &start, &type, &error);
if (res == 0) {
TEST_SYNTAX_ERROR(test, 0, "%s\n", error);
return 0;
}
if (type != NUM_EQ) {
TEST_SYNTAX_ERROR(test, 0, "Range specifier (<, >, -, +) not "
"expected\n");
return 0;
}
res = parse_number(atom->argv[1], &end, &type, &error);
if (res == 0) {
TEST_SYNTAX_ERROR(test, 1, "%s\n", error);
return 0;
}
if (type != NUM_EQ) {
TEST_SYNTAX_ERROR(test, 1, "Range specifier (<, >, -, +) not "
"expected\n");
return 0;
}
range = malloc(sizeof(*range));
if (range == NULL)
MEM_ERROR();
range->start = start;
range->end = end;
atom->data = range;
return 1;
}
/*
* Generic test code macro
*/
#define TEST_FN(NAME, MATCH, CODE) \
static int NAME##_fn(struct atom *atom, struct action_data *action_data) \
{ \
/* test operates on MATCH file types only */ \
if (!file_type_match(action_data->buf->st_mode, MATCH)) \
return 0; \
\
CODE \
}
/*
* Generic test code macro testing VAR for size (eq, less than, greater than)
*/
#define TEST_VAR_FN(NAME, MATCH, VAR) TEST_FN(NAME, MATCH, \
{ \
int match = 0; \
struct test_number_arg *number = atom->data; \
\
switch (number->range) { \
case NUM_EQ: \
match = VAR == number->size; \
break; \
case NUM_LESS: \
match = VAR < number->size; \
break; \
case NUM_GREATER: \
match = VAR > number->size; \
break; \
} \
\
return match; \
})
/*
* Generic test code macro testing VAR for range [x, y] (value between x and y
* inclusive).
*/
#define TEST_VAR_RANGE_FN(NAME, MATCH, VAR) TEST_FN(NAME##_range, MATCH, \
{ \
struct test_range_args *range = atom->data; \
\
return range->start <= VAR && VAR <= range->end; \
})
/*
* Name, Pathname and Subpathname test specific code
*/
/*
* Add a leading "/" if subpathname and pathname lacks it
*/
static int check_pathname(struct test_entry *test, struct atom *atom)
{
int res;
char *name;
if(atom->argv[0][0] != '/') {
res = asprintf(&name, "/%s", atom->argv[0]);
if(res == -1)
BAD_ERROR("asprintf failed in check_pathname\n");
free(atom->argv[0]);
atom->argv[0] = name;
}
return 1;
}
TEST_FN(name, ACTION_ALL_LNK, \
return fnmatch(atom->argv[0], action_data->name,
FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) == 0;)
TEST_FN(pathname, ACTION_ALL_LNK, \
return fnmatch(atom->argv[0], action_data->subpath,
FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) == 0;)
static int count_components(char *path)
{
int count;
for (count = 0; *path != '\0'; count ++) {
while (*path == '/')
path ++;
while (*path != '\0' && *path != '/')
path ++;
}
return count;
}
static char *get_start(char *s, int n)
{
int count;
char *path = s;
for (count = 0; *path != '\0' && count < n; count ++) {
while (*path == '/')
path ++;
while (*path != '\0' && *path != '/')
path ++;
}
if (count == n)
*path = '\0';
return s;
}
static int subpathname_fn(struct atom *atom, struct action_data *action_data)
{
return fnmatch(atom->argv[0], get_start(strdupa(action_data->subpath),
count_components(atom->argv[0])),
FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) == 0;
}
/*
* Inode attribute test operations using generic
* TEST_VAR_FN(test name, file scope, attribute name) macro.
* This is for tests that do not need to be specially handled in any way.
* They just take a variable and compare it against a number.
*/
TEST_VAR_FN(filesize, ACTION_REG, action_data->buf->st_size)
TEST_VAR_FN(dirsize, ACTION_DIR, action_data->buf->st_size)
TEST_VAR_FN(size, ACTION_ALL_LNK, action_data->buf->st_size)
TEST_VAR_FN(inode, ACTION_ALL_LNK, action_data->buf->st_ino)
TEST_VAR_FN(nlink, ACTION_ALL_LNK, action_data->buf->st_nlink)
TEST_VAR_FN(fileblocks, ACTION_REG, action_data->buf->st_blocks)
TEST_VAR_FN(dirblocks, ACTION_DIR, action_data->buf->st_blocks)
TEST_VAR_FN(blocks, ACTION_ALL_LNK, action_data->buf->st_blocks)
TEST_VAR_FN(dircount, ACTION_DIR, action_data->dir_ent->dir->count)
TEST_VAR_FN(depth, ACTION_ALL_LNK, action_data->depth)
TEST_VAR_RANGE_FN(filesize, ACTION_REG, action_data->buf->st_size)
TEST_VAR_RANGE_FN(dirsize, ACTION_DIR, action_data->buf->st_size)
TEST_VAR_RANGE_FN(size, ACTION_ALL_LNK, action_data->buf->st_size)
TEST_VAR_RANGE_FN(inode, ACTION_ALL_LNK, action_data->buf->st_ino)
TEST_VAR_RANGE_FN(nlink, ACTION_ALL_LNK, action_data->buf->st_nlink)
TEST_VAR_RANGE_FN(fileblocks, ACTION_REG, action_data->buf->st_blocks)
TEST_VAR_RANGE_FN(dirblocks, ACTION_DIR, action_data->buf->st_blocks)
TEST_VAR_RANGE_FN(blocks, ACTION_ALL_LNK, action_data->buf->st_blocks)
TEST_VAR_RANGE_FN(gid, ACTION_ALL_LNK, action_data->buf->st_gid)
TEST_VAR_RANGE_FN(uid, ACTION_ALL_LNK, action_data->buf->st_uid)
TEST_VAR_RANGE_FN(depth, ACTION_ALL_LNK, action_data->depth)
TEST_VAR_RANGE_FN(dircount, ACTION_DIR, action_data->dir_ent->dir->count)
/*
* uid specific test code
*/
TEST_VAR_FN(uid, ACTION_ALL_LNK, action_data->buf->st_uid)
static int parse_uid_arg(struct test_entry *test, struct atom *atom)
{
struct test_number_arg *number;
long long size;
int range;
char *error;
if(parse_number(atom->argv[0], &size, &range, &error)) {
/* managed to fully parse argument as a number */
if(size < 0 || size > (((long long) 1 << 32) - 1)) {
TEST_SYNTAX_ERROR(test, 1, "Numeric uid out of "
"range\n");
return 0;
}
} else {
/* couldn't parse (fully) as a number, is it a user name? */
struct passwd *uid = getpwnam(atom->argv[0]);
if(uid) {
size = uid->pw_uid;
range = NUM_EQ;
} else {
TEST_SYNTAX_ERROR(test, 1, "Invalid uid or unknown "
"user\n");
return 0;
}
}
number = malloc(sizeof(*number));
if(number == NULL)
MEM_ERROR();
number->range = range;
number->size= size;
atom->data = number;
return 1;
}
/*
* gid specific test code
*/
TEST_VAR_FN(gid, ACTION_ALL_LNK, action_data->buf->st_gid)
static int parse_gid_arg(struct test_entry *test, struct atom *atom)
{
struct test_number_arg *number;
long long size;
int range;
char *error;
if(parse_number(atom->argv[0], &size, &range, &error)) {
/* managed to fully parse argument as a number */
if(size < 0 || size > (((long long) 1 << 32) - 1)) {
TEST_SYNTAX_ERROR(test, 1, "Numeric gid out of "
"range\n");
return 0;
}
} else {
/* couldn't parse (fully) as a number, is it a group name? */
struct group *gid = getgrnam(atom->argv[0]);
if(gid) {
size = gid->gr_gid;
range = NUM_EQ;
} else {
TEST_SYNTAX_ERROR(test, 1, "Invalid gid or unknown "
"group\n");
return 0;
}
}
number = malloc(sizeof(*number));
if(number == NULL)
MEM_ERROR();
number->range = range;
number->size= size;
atom->data = number;
return 1;
}
/*
* Type test specific code
*/
struct type_entry type_table[] = {
{ S_IFSOCK, 's' },
{ S_IFLNK, 'l' },
{ S_IFREG, 'f' },
{ S_IFBLK, 'b' },
{ S_IFDIR, 'd' },
{ S_IFCHR, 'c' },
{ S_IFIFO, 'p' },
{ 0, 0 },
};
static int parse_type_arg(struct test_entry *test, struct atom *atom)
{
int i;
if (strlen(atom->argv[0]) != 1)
goto failed;
for(i = 0; type_table[i].type != 0; i++)
if (type_table[i].type == atom->argv[0][0])
break;
atom->data = &type_table[i];
if(type_table[i].type != 0)
return 1;
failed:
TEST_SYNTAX_ERROR(test, 0, "Unexpected file type, expected 'f', 'd', "
"'c', 'b', 'l', 's' or 'p'\n");
return 0;
}
static int type_fn(struct atom *atom, struct action_data *action_data)
{
struct type_entry *type = atom->data;
return (action_data->buf->st_mode & S_IFMT) == type->value;
}
/*
* True test specific code
*/
static int true_fn(struct atom *atom, struct action_data *action_data)
{
return 1;
}
/*
* False test specific code
*/
static int false_fn(struct atom *atom, struct action_data *action_data)
{
return 0;
}
/*
* File test specific code
*/
static int parse_file_arg(struct test_entry *test, struct atom *atom)
{
int res;
regex_t *preg = malloc(sizeof(regex_t));
if (preg == NULL)
MEM_ERROR();
res = regcomp(preg, atom->argv[0], REG_EXTENDED);
if (res) {
char str[1024]; /* overflow safe */
regerror(res, preg, str, 1024);
free(preg);
TEST_SYNTAX_ERROR(test, 0, "invalid regex \"%s\" because "
"\"%s\"\n", atom->argv[0], str);
return 0;
}
atom->data = preg;
return 1;
}
static int file_fn(struct atom *atom, struct action_data *action_data)
{
int child, res, size = 0, status;
int pipefd[2];
char *buffer = NULL;
regex_t *preg = atom->data;
res = pipe(pipefd);
if (res == -1)
BAD_ERROR("file_fn pipe failed\n");
child = fork();
if (child == -1)
BAD_ERROR("file_fn fork_failed\n");
if (child == 0) {
/*
* Child process
* Connect stdout to pipefd[1] and execute file command
*/
close(STDOUT_FILENO);
res = dup(pipefd[1]);
if (res == -1)
exit(EXIT_FAILURE);
execlp("file", "file", "-b", action_data->pathname,
(char *) NULL);
exit(EXIT_FAILURE);
}
/*
* Parent process. Read stdout from file command
*/
close(pipefd[1]);
do {
buffer = realloc(buffer, size + 512);
if (buffer == NULL)
MEM_ERROR();
res = read_bytes(pipefd[0], buffer + size, 512);
if (res == -1)
BAD_ERROR("file_fn pipe read error\n");
size += 512;
} while (res == 512);
size = size + res - 512;
buffer[size] = '\0';
res = waitpid(child, &status, 0);
if (res == -1)
BAD_ERROR("file_fn waitpid failed\n");
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
BAD_ERROR("file_fn file returned error\n");
close(pipefd[0]);
res = regexec(preg, buffer, (size_t) 0, NULL, 0);
free(buffer);
return res == 0;
}
/*
* Exec test specific code
*/
static int exec_fn(struct atom *atom, struct action_data *action_data)
{
int child, i, res, status;
child = fork();
if (child == -1)
BAD_ERROR("exec_fn fork_failed\n");
if (child == 0) {
/*
* Child process
* redirect stdin, stdout & stderr to /dev/null and
* execute atom->argv[0]
*/
int fd = open("/dev/null", O_RDWR);
if(fd == -1)
exit(EXIT_FAILURE);
close(STDIN_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
for(i = 0; i < 3; i++) {
res = dup(fd);
if (res == -1)
exit(EXIT_FAILURE);
}
close(fd);
/*
* Create environment variables
* NAME: name of file
* PATHNAME: pathname of file relative to squashfs root
* SOURCE_PATHNAME: the pathname of the file in the source
* directory
*/
res = setenv("NAME", action_data->name, 1);
if(res == -1)
exit(EXIT_FAILURE);
res = setenv("PATHNAME", action_data->subpath, 1);
if(res == -1)
exit(EXIT_FAILURE);
res = setenv("SOURCE_PATHNAME", action_data->pathname, 1);
if(res == -1)
exit(EXIT_FAILURE);
execl("/bin/sh", "sh", "-c", atom->argv[0], (char *) NULL);
exit(EXIT_FAILURE);
}
/*
* Parent process.
*/
res = waitpid(child, &status, 0);
if (res == -1)
BAD_ERROR("exec_fn waitpid failed\n");
return WIFEXITED(status) ? WEXITSTATUS(status) == 0 : 0;
}
/*
* Symbolic link specific test code
*/
/*
* Walk the supplied pathname and return the directory entry corresponding
* to the pathname. If any symlinks are encountered whilst walking the
* pathname, then recursively walk these, to obtain the fully
* dereferenced canonicalised directory entry.
*
* If follow_path fails to walk a pathname either because a component
* doesn't exist, it is a non directory component when a directory
* component is expected, a symlink with an absolute path is encountered,
* or a symlink is encountered which cannot be recursively walked due to
* the above failures, then return NULL.
*/
static struct dir_ent *follow_path(struct dir_info *dir, char *pathname)
{
char *comp, *path = pathname;
struct dir_ent *dir_ent = NULL;
/* We cannot follow absolute paths */
if(pathname[0] == '/')
return NULL;
for(comp = get_comp(&path); comp; free(comp), comp = get_comp(&path)) {
if(strcmp(comp, ".") == 0)
continue;
if(strcmp(comp, "..") == 0) {
/* Move to parent if we're not in the root directory */
if(dir->depth > 1) {
dir = dir->dir_ent->our_dir;
dir_ent = NULL; /* lazily eval at loop exit */
continue;
} else
/* Failed to walk pathname */
return NULL;
}
/* Lookup comp in current directory */
dir_ent = lookup_comp(comp, dir);
if(dir_ent == NULL)
/* Doesn't exist, failed to walk pathname */
return NULL;
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFLNK) {
/* Symbolic link, try to walk it */
dir_ent = follow_path(dir, dir_ent->inode->symlink);
if(dir_ent == NULL)
/* Failed to follow symlink */
return NULL;
}
if((dir_ent->inode->buf.st_mode & S_IFMT) != S_IFDIR)
/* Cannot walk further */
break;
dir = dir_ent->dir;
}
/* We will have exited the loop either because we've processed
* all the components, which means we've successfully walked the
* pathname, or because we've hit a non-directory, in which case
* it's success if this is the leaf component */
if(comp) {
free(comp);
comp = get_comp(&path);
free(comp);
if(comp != NULL)
/* Not a leaf component */
return NULL;
} else {
/* Fully walked pathname, dir_ent contains correct value unless
* we've walked to the parent ("..") in which case we need
* to resolve it here */
if(!dir_ent)
dir_ent = dir->dir_ent;
}
return dir_ent;
}
static int exists_fn(struct atom *atom, struct action_data *action_data)
{
/*
* Test if a symlink exists within the output filesystem, that is,
* the symlink has a relative path, and the relative path refers
* to an entry within the output filesystem.
*
* This test function evaluates the path for symlinks - that is it
* follows any symlinks in the path (and any symlinks that it contains
* etc.), to discover the fully dereferenced canonicalised relative
* path.
*
* If any symlinks within the path do not exist or are absolute
* then the symlink is considered to not exist, as it cannot be
* fully dereferenced.
*
* exists operates on symlinks only, other files by definition
* exist
*/
if (!file_type_match(action_data->buf->st_mode, ACTION_LNK))
return 1;
/* dereference the symlink, and return TRUE if it exists */
return follow_path(action_data->dir_ent->our_dir,
action_data->dir_ent->inode->symlink) ? 1 : 0;
}
static int absolute_fn(struct atom *atom, struct action_data *action_data)
{
/*
* Test if a symlink has an absolute path, which by definition
* means the symbolic link may be broken (even if the absolute path
* does point into the filesystem being squashed, because the resultant
* filesystem can be mounted/unsquashed anywhere, it is unlikely the
* absolute path will still point to the right place). If you know that
* an absolute symlink will point to the right place then you don't need
* to use this function, and/or these symlinks can be excluded by
* use of other test operators.
*
* absolute operates on symlinks only, other files by definition
* don't have problems
*/
if (!file_type_match(action_data->buf->st_mode, ACTION_LNK))
return 0;
return action_data->dir_ent->inode->symlink[0] == '/';
}
static int parse_expr_argX(struct test_entry *test, struct atom *atom,
int argno)
{
/* Call parse_expr to parse argument, which should be an expression */
/* save the current parser state */
char *save_cur_ptr = cur_ptr;
char *save_source = source;
cur_ptr = source = atom->argv[argno];
atom->data = parse_expr(0);
cur_ptr = save_cur_ptr;
source = save_source;
if(atom->data == NULL) {
/* parse_expr(0) will have reported the exact syntax error,
* but, because we recursively evaluated the expression, it
* will have been reported without the context of the stat
* test(). So here additionally report our failure to parse
* the expression in the stat() test to give context */
TEST_SYNTAX_ERROR(test, 0, "Failed to parse expression\n");
return 0;
}
return 1;
}
static int parse_expr_arg0(struct test_entry *test, struct atom *atom)
{
return parse_expr_argX(test, atom, 0);
}
static int parse_expr_arg1(struct test_entry *test, struct atom *atom)
{
return parse_expr_argX(test, atom, 1);
}
static int stat_fn(struct atom *atom, struct action_data *action_data)
{
struct stat buf;
struct action_data eval_action;
int match, res;
/* evaluate the expression using the context of the inode
* pointed to by the symlink. This allows the inode attributes
* of the file pointed to by the symlink to be evaluated, rather
* than the symlink itself.
*
* Note, stat() deliberately does not evaluate the pathname, name or
* depth of the symlink, these are left with the symlink values.
* This allows stat() to be used on any symlink, rather than
* just symlinks which are contained (if the symlink is *not*
* contained then pathname, name and depth are meaningless as they
* are relative to the filesystem being squashed). */
/* if this isn't a symlink then stat will just return the current
* information, i.e. stat(expr) == expr. This is harmless and
* is better than returning TRUE or FALSE in a non symlink case */
res = stat(action_data->pathname, &buf);
if(res == -1) {
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
expr_log_match(0);
expr_log(")");
}
return 0;
}
/* fill in the inode values of the file pointed to by the
* symlink, but, leave everything else the same */
memcpy(&eval_action, action_data, sizeof(struct action_data));
eval_action.buf = &buf;
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
match = eval_expr_log(atom->data, &eval_action);
expr_log(")");
} else
match = eval_expr(atom->data, &eval_action);
return match;
}
static int readlink_fn(struct atom *atom, struct action_data *action_data)
{
int match = 0;
struct dir_ent *dir_ent;
struct action_data eval_action;
/* Dereference the symlink and evaluate the expression in the
* context of the file pointed to by the symlink.
* All attributes are updated to refer to the file that is pointed to.
* Thus the inode attributes, pathname, name and depth all refer to
* the dereferenced file, and not the symlink.
*
* If the symlink cannot be dereferenced because it doesn't exist in
* the output filesystem, or due to some other failure to
* walk the pathname (see follow_path above), then FALSE is returned.
*
* If you wish to evaluate the inode attributes of symlinks which
* exist in the source filestem (but not in the output filesystem then
* use stat instead (see above).
*
* readlink operates on symlinks only */
if (!file_type_match(action_data->buf->st_mode, ACTION_LNK))
goto finish;
/* dereference the symlink, and get the directory entry it points to */
dir_ent = follow_path(action_data->dir_ent->our_dir,
action_data->dir_ent->inode->symlink);
if(dir_ent == NULL)
goto finish;
eval_action.name = dir_ent->name;
eval_action.pathname = strdup(pathname(dir_ent));
eval_action.subpath = strdup(subpathname(dir_ent));
eval_action.buf = &dir_ent->inode->buf;
eval_action.depth = dir_ent->our_dir->depth;
eval_action.dir_ent = dir_ent;
eval_action.root = action_data->root;
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
match = eval_expr_log(atom->data, &eval_action);
expr_log(")");
} else
match = eval_expr(atom->data, &eval_action);
free(eval_action.pathname);
free(eval_action.subpath);
return match;
finish:
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
expr_log_match(0);
expr_log(")");
}
return 0;
}
static int eval_fn(struct atom *atom, struct action_data *action_data)
{
int match;
char *path = atom->argv[0];
struct dir_ent *dir_ent = action_data->dir_ent;
struct stat *buf = action_data->buf;
struct action_data eval_action;
/* Follow path (arg1) and evaluate the expression (arg2)
* in the context of the file discovered. All attributes are updated
* to refer to the file that is pointed to.
*
* This test operation allows you to add additional context to the
* evaluation of the file being scanned, such as "if current file is
* XXX and the parent is YYY, then ..." Often times you need or
* want to test a combination of file status
*
* If the file referenced by the path does not exist in
* the output filesystem, or some other failure is experienced in
* walking the path (see follow_path above), then FALSE is returned.
*
* If you wish to evaluate the inode attributes of files which
* exist in the source filestem (but not in the output filesystem then
* use stat instead (see above). */
/* try to follow path, and get the directory entry it points to */
if(path[0] == '/') {
/* absolute, walk from root - first skip the leading / */
while(path[0] == '/')
path ++;
if(path[0] == '\0')
dir_ent = action_data->root->dir_ent;
else
dir_ent = follow_path(action_data->root, path);
} else {
/* relative, if first component is ".." walk from parent,
* otherwise walk from dir_ent.
* Note: this has to be handled here because follow_path
* will quite correctly refuse to execute ".." on anything
* which isn't a directory */
if(strncmp(path, "..", 2) == 0 && (path[2] == '\0' ||
path[2] == '/')) {
/* walk from parent */
path += 2;
while(path[0] == '/')
path ++;
if(path[0] == '\0')
dir_ent = dir_ent->our_dir->dir_ent;
else
dir_ent = follow_path(dir_ent->our_dir, path);
} else if(!file_type_match(buf->st_mode, ACTION_DIR))
dir_ent = NULL;
else
dir_ent = follow_path(dir_ent->dir, path);
}
if(dir_ent == NULL) {
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
expr_log(atom->argv[0]);
expr_log(",");
expr_log_match(0);
expr_log(")");
}
return 0;
}
eval_action.name = dir_ent->name;
eval_action.pathname = strdup(pathname(dir_ent));
eval_action.subpath = strdup(subpathname(dir_ent));
eval_action.buf = &dir_ent->inode->buf;
eval_action.depth = dir_ent->our_dir->depth;
eval_action.dir_ent = dir_ent;
eval_action.root = action_data->root;
if(expr_log_cmnd(LOG_ENABLED)) {
expr_log(atom->test->name);
expr_log("(");
expr_log(eval_action.subpath);
expr_log(",");
match = eval_expr_log(atom->data, &eval_action);
expr_log(")");
} else
match = eval_expr(atom->data, &eval_action);
free(eval_action.pathname);
free(eval_action.subpath);
return match;
}
/*
* Perm specific test code
*/
static int parse_perm_args(struct test_entry *test, struct atom *atom)
{
int res = 1, mode, op, i;
char *arg;
struct mode_data *head = NULL, *cur = NULL;
struct perm_data *perm_data;
if(atom->args == 0) {
TEST_SYNTAX_ERROR(test, 0, "One or more arguments expected\n");
return 0;
}
switch(atom->argv[0][0]) {
case '-':
op = PERM_ALL;
arg = atom->argv[0] + 1;
break;
case '/':
op = PERM_ANY;
arg = atom->argv[0] + 1;
break;
default:
op = PERM_EXACT;
arg = atom->argv[0];
break;
}
/* try to parse as an octal number */
res = parse_octal_mode_args(atom->args, atom->argv, (void **) &head);
if(res == -1) {
/* parse as sym mode argument */
for(i = 0; i < atom->args && res; i++, arg = atom->argv[i])
res = parse_sym_mode_arg(arg, &head, &cur);
}
if (res == 0)
goto finish;
/*
* Evaluate the symbolic mode against a permission of 0000 octal
*/
mode = mode_execute(head, 0);
perm_data = malloc(sizeof(struct perm_data));
if (perm_data == NULL)
MEM_ERROR();
perm_data->op = op;
perm_data->mode = mode;
atom->data = perm_data;
finish:
while(head) {
struct mode_data *tmp = head;
head = head->next;
free(tmp);
}
return res;
}
static int perm_fn(struct atom *atom, struct action_data *action_data)
{
struct perm_data *perm_data = atom->data;
struct stat *buf = action_data->buf;
switch(perm_data->op) {
case PERM_EXACT:
return (buf->st_mode & ~S_IFMT) == perm_data->mode;
case PERM_ALL:
return (buf->st_mode & perm_data->mode) == perm_data->mode;
case PERM_ANY:
default:
/*
* if no permission bits are set in perm_data->mode match
* on any file, this is to be consistent with find, which
* does this to be consistent with the behaviour of
* -perm -000
*/
return perm_data->mode == 0 || (buf->st_mode & perm_data->mode);
}
}
#ifdef SQUASHFS_TRACE
static void dump_parse_tree(struct expr *expr)
{
int i;
if(expr->type == ATOM_TYPE) {
printf("%s", expr->atom.test->name);
if(expr->atom.args) {
printf("(");
for(i = 0; i < expr->atom.args; i++) {
printf("%s", expr->atom.argv[i]);
if (i + 1 < expr->atom.args)
printf(",");
}
printf(")");
}
} else if (expr->type == UNARY_TYPE) {
printf("%s", token_table[expr->unary_op.op].string);
dump_parse_tree(expr->unary_op.expr);
} else {
printf("(");
dump_parse_tree(expr->expr_op.lhs);
printf("%s", token_table[expr->expr_op.op].string);
dump_parse_tree(expr->expr_op.rhs);
printf(")");
}
}
void dump_action_list(struct action *spec_list, int spec_count)
{
int i;
for (i = 0; i < spec_count; i++) {
printf("%s", spec_list[i].action->name);
if (spec_list[i].args) {
int n;
printf("(");
for (n = 0; n < spec_list[i].args; n++) {
printf("%s", spec_list[i].argv[n]);
if (n + 1 < spec_list[i].args)
printf(",");
}
printf(")");
}
printf("=");
dump_parse_tree(spec_list[i].expr);
printf("\n");
}
}
void dump_actions()
{
dump_action_list(exclude_spec, exclude_count);
dump_action_list(fragment_spec, fragment_count);
dump_action_list(other_spec, other_count);
dump_action_list(move_spec, move_count);
dump_action_list(empty_spec, empty_count);
}
#else
void dump_actions()
{
}
#endif
static struct test_entry test_table[] = {
{ "name", 1, name_fn, NULL, 1},
{ "pathname", 1, pathname_fn, check_pathname, 1, 0},
{ "subpathname", 1, subpathname_fn, check_pathname, 1, 0},
{ "filesize", 1, filesize_fn, parse_number_arg, 1, 0},
{ "dirsize", 1, dirsize_fn, parse_number_arg, 1, 0},
{ "size", 1, size_fn, parse_number_arg, 1, 0},
{ "inode", 1, inode_fn, parse_number_arg, 1, 0},
{ "nlink", 1, nlink_fn, parse_number_arg, 1, 0},
{ "fileblocks", 1, fileblocks_fn, parse_number_arg, 1, 0},
{ "dirblocks", 1, dirblocks_fn, parse_number_arg, 1, 0},
{ "blocks", 1, blocks_fn, parse_number_arg, 1, 0},
{ "gid", 1, gid_fn, parse_gid_arg, 1, 0},
{ "uid", 1, uid_fn, parse_uid_arg, 1, 0},
{ "depth", 1, depth_fn, parse_number_arg, 1, 0},
{ "dircount", 1, dircount_fn, parse_number_arg, 0, 0},
{ "filesize_range", 2, filesize_range_fn, parse_range_args, 1, 0},
{ "dirsize_range", 2, dirsize_range_fn, parse_range_args, 1, 0},
{ "size_range", 2, size_range_fn, parse_range_args, 1, 0},
{ "inode_range", 2, inode_range_fn, parse_range_args, 1, 0},
{ "nlink_range", 2, nlink_range_fn, parse_range_args, 1, 0},
{ "fileblocks_range", 2, fileblocks_range_fn, parse_range_args, 1, 0},
{ "dirblocks_range", 2, dirblocks_range_fn, parse_range_args, 1, 0},
{ "blocks_range", 2, blocks_range_fn, parse_range_args, 1, 0},
{ "gid_range", 2, gid_range_fn, parse_range_args, 1, 0},
{ "uid_range", 2, uid_range_fn, parse_range_args, 1, 0},
{ "depth_range", 2, depth_range_fn, parse_range_args, 1, 0},
{ "dircount_range", 2, dircount_range_fn, parse_range_args, 0, 0},
{ "type", 1, type_fn, parse_type_arg, 1, 0},
{ "true", 0, true_fn, NULL, 1, 0},
{ "false", 0, false_fn, NULL, 1, 0},
{ "file", 1, file_fn, parse_file_arg, 1, 0},
{ "exec", 1, exec_fn, NULL, 1, 0},
{ "exists", 0, exists_fn, NULL, 0, 0},
{ "absolute", 0, absolute_fn, NULL, 0, 0},
{ "stat", 1, stat_fn, parse_expr_arg0, 1, 1},
{ "readlink", 1, readlink_fn, parse_expr_arg0, 0, 1},
{ "eval", 2, eval_fn, parse_expr_arg1, 0, 1},
{ "perm", -2, perm_fn, parse_perm_args, 1, 0},
{ "", -1 }
};
static struct action_entry action_table[] = {
{ "fragment", FRAGMENT_ACTION, 1, ACTION_REG, NULL, NULL},
{ "exclude", EXCLUDE_ACTION, 0, ACTION_ALL_LNK, NULL, NULL},
{ "fragments", FRAGMENTS_ACTION, 0, ACTION_REG, NULL, frag_action},
{ "no-fragments", NO_FRAGMENTS_ACTION, 0, ACTION_REG, NULL,
no_frag_action},
{ "always-use-fragments", ALWAYS_FRAGS_ACTION, 0, ACTION_REG, NULL,
always_frag_action},
{ "dont-always-use-fragments", NO_ALWAYS_FRAGS_ACTION, 0, ACTION_REG,
NULL, no_always_frag_action},
{ "compressed", COMPRESSED_ACTION, 0, ACTION_REG, NULL, comp_action},
{ "uncompressed", UNCOMPRESSED_ACTION, 0, ACTION_REG, NULL,
uncomp_action},
{ "uid", UID_ACTION, 1, ACTION_ALL_LNK, parse_uid_args, uid_action},
{ "gid", GID_ACTION, 1, ACTION_ALL_LNK, parse_gid_args, gid_action},
{ "guid", GUID_ACTION, 2, ACTION_ALL_LNK, parse_guid_args, guid_action},
{ "mode", MODE_ACTION, -2, ACTION_ALL, parse_mode_args, mode_action },
{ "empty", EMPTY_ACTION, -2, ACTION_DIR, parse_empty_args, NULL},
{ "move", MOVE_ACTION, 1, ACTION_ALL_LNK, NULL, NULL},
{ "prune", PRUNE_ACTION, 0, ACTION_ALL_LNK, NULL, NULL},
{ "chmod", MODE_ACTION, -2, ACTION_ALL, parse_mode_args, mode_action },
{ "noop", NOOP_ACTION, 0, ACTION_ALL, NULL, noop_action },
{ "", 0, -1, 0, NULL, NULL}
};