#if !defined(MAX_TIMERS)
#define MAX_TIMERS MAX_WORKER_THREADS
#endif

typedef int (*taction)(void *arg);

struct ttimer {
	double time;
	double period;
	taction action;
	void *arg;
};

struct ttimers {
	pthread_t threadid;               /* Timer thread ID */
	pthread_mutex_t mutex;            /* Protects timer lists */
	struct ttimer timers[MAX_TIMERS]; /* List of timers */
	unsigned timer_count;             /* Current size of timer list */
};

static int
timer_add(struct mg_context *ctx,
          double next_time,
          double period,
          int is_relative,
          taction action,
          void *arg)
{
	unsigned u, v;
	int error = 0;
	struct timespec now;

	if (ctx->stop_flag) {
		return 0;
	}

	if (is_relative) {
		clock_gettime(CLOCK_MONOTONIC, &now);
		next_time += now.tv_sec;
		next_time += now.tv_nsec * 1.0E-9;
	}

	pthread_mutex_lock(&ctx->timers->mutex);
	if (ctx->timers->timer_count == MAX_TIMERS) {
		error = 1;
	} else {
		for (u = 0; u < ctx->timers->timer_count; u++) {
			if (ctx->timers->timers[u].time < next_time) {
				for (v = ctx->timers->timer_count; v > u; v--) {
					ctx->timers->timers[v] = ctx->timers->timers[v - 1];
				}
				break;
			}
		}
		ctx->timers->timers[u].time = next_time;
		ctx->timers->timers[u].period = period;
		ctx->timers->timers[u].action = action;
		ctx->timers->timers[u].arg = arg;
		ctx->timers->timer_count++;
	}
	pthread_mutex_unlock(&ctx->timers->mutex);
	return error;
}

static void
timer_thread_run(void *thread_func_param)
{
	struct mg_context *ctx = (struct mg_context *)thread_func_param;
	struct timespec now;
	double d;
	unsigned u;
	int re_schedule;
	struct ttimer t;

	mg_set_thread_name("timer");

	if (ctx->callbacks.init_thread) {
		/* Timer thread */
		ctx->callbacks.init_thread(ctx, 2);
	}

#if defined(HAVE_CLOCK_NANOSLEEP) /* Linux with librt */
	/* TODO */
	while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &request, &request)
	       == EINTR) { /*nop*/
		;
	}
#else
	clock_gettime(CLOCK_MONOTONIC, &now);
	d = (double)now.tv_sec + (double)now.tv_nsec * 1.0E-9;
	while (ctx->stop_flag == 0) {
		pthread_mutex_lock(&ctx->timers->mutex);
		if (ctx->timers->timer_count > 0 && d >= ctx->timers->timers[0].time) {
			t = ctx->timers->timers[0];
			for (u = 1; u < ctx->timers->timer_count; u++) {
				ctx->timers->timers[u - 1] = ctx->timers->timers[u];
			}
			ctx->timers->timer_count--;
			pthread_mutex_unlock(&ctx->timers->mutex);
			re_schedule = t.action(t.arg);
			if (re_schedule && (t.period > 0)) {
				timer_add(ctx, t.time + t.period, t.period, 0, t.action, t.arg);
			}
			continue;
		} else {
			pthread_mutex_unlock(&ctx->timers->mutex);
		}
		mg_sleep(1);
		clock_gettime(CLOCK_MONOTONIC, &now);
		d = (double)now.tv_sec + (double)now.tv_nsec * 1.0E-9;
	}
#endif
}

#ifdef _WIN32
static unsigned __stdcall timer_thread(void *thread_func_param)
{
	timer_thread_run(thread_func_param);
	return 0;
}
#else
static void *
timer_thread(void *thread_func_param)
{
	timer_thread_run(thread_func_param);
	return NULL;
}
#endif /* _WIN32 */

static int
timers_init(struct mg_context *ctx)
{
	ctx->timers = (struct ttimers *)mg_calloc(sizeof(struct ttimers), 1);
	(void)pthread_mutex_init(&ctx->timers->mutex, NULL);

	/* Start timer thread */
	mg_start_thread_with_id(timer_thread, ctx, &ctx->timers->threadid);

	return 0;
}

static void
timers_exit(struct mg_context *ctx)
{
	if (ctx->timers) {
		(void)pthread_mutex_destroy(&ctx->timers->mutex);
		mg_free(ctx->timers);
	}
}