Ventoy/SQUASHFS/squashfs-tools-4.4/squashfs-tools/mksquashfs.c

6373 lines
165 KiB
C
Raw Normal View History

2020-04-04 12:07:50 -04:00
/*
* Create a squashfs filesystem. This is a highly compressed read only
* filesystem.
*
* Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
* 2012, 2013, 2014, 2017, 2019
* Phillip Lougher <phillip@squashfs.org.uk>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2,
* or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* mksquashfs.c
*/
#define FALSE 0
#define TRUE 1
#define MAX_LINE 16384
#include <pwd.h>
#include <grp.h>
#include <time.h>
#include <unistd.h>
#include <stdio.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <pthread.h>
#include <regex.h>
#include <sys/wait.h>
#include <limits.h>
#include <ctype.h>
#include <sys/sysinfo.h>
#ifndef linux
#define __BYTE_ORDER BYTE_ORDER
#define __BIG_ENDIAN BIG_ENDIAN
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#include <sys/sysctl.h>
#else
#include <endian.h>
#include <sys/sysinfo.h>
#endif
#include "squashfs_fs.h"
#include "squashfs_swap.h"
#include "mksquashfs.h"
#include "sort.h"
#include "pseudo.h"
#include "compressor.h"
#include "xattr.h"
#include "action.h"
#include "error.h"
#include "progressbar.h"
#include "info.h"
#include "caches-queues-lists.h"
#include "read_fs.h"
#include "restore.h"
#include "process_fragments.h"
#include "fnmatch_compat.h"
int delete = FALSE;
int quiet = FALSE;
int fd;
struct squashfs_super_block sBlk;
/* filesystem flags for building */
int comp_opts = FALSE;
int no_xattrs = XATTR_DEF;
int noX = FALSE;
int duplicate_checking = TRUE;
int noF = FALSE;
int no_fragments = FALSE;
int always_use_fragments = FALSE;
int noI = FALSE;
int noId = FALSE;
int noD = FALSE;
int silent = TRUE;
int exportable = TRUE;
int sparse_files = TRUE;
int old_exclude = TRUE;
int use_regex = FALSE;
int nopad = FALSE;
int exit_on_error = FALSE;
long long start_offset = 0;
long long global_uid = -1, global_gid = -1;
/* superblock attributes */
int block_size = SQUASHFS_FILE_SIZE, block_log;
unsigned int id_count = 0;
int file_count = 0, sym_count = 0, dev_count = 0, dir_count = 0, fifo_count = 0,
sock_count = 0;
/* write position within data section */
long long bytes = 0, total_bytes = 0;
/* in memory directory table - possibly compressed */
char *directory_table = NULL;
unsigned int directory_bytes = 0, directory_size = 0, total_directory_bytes = 0;
/* cached directory table */
char *directory_data_cache = NULL;
unsigned int directory_cache_bytes = 0, directory_cache_size = 0;
/* in memory inode table - possibly compressed */
char *inode_table = NULL;
unsigned int inode_bytes = 0, inode_size = 0, total_inode_bytes = 0;
/* cached inode table */
char *data_cache = NULL;
unsigned int cache_bytes = 0, cache_size = 0, inode_count = 0;
/* inode lookup table */
squashfs_inode *inode_lookup_table = NULL;
/* in memory directory data */
#define I_COUNT_SIZE 128
#define DIR_ENTRIES 32
#define INODE_HASH_SIZE 65536
#define INODE_HASH_MASK (INODE_HASH_SIZE - 1)
#define INODE_HASH(dev, ino) (ino & INODE_HASH_MASK)
struct cached_dir_index {
struct squashfs_dir_index index;
char *name;
};
struct directory {
unsigned int start_block;
unsigned int size;
unsigned char *buff;
unsigned char *p;
unsigned int entry_count;
unsigned char *entry_count_p;
unsigned int i_count;
unsigned int i_size;
struct cached_dir_index *index;
unsigned char *index_count_p;
unsigned int inode_number;
};
struct inode_info *inode_info[INODE_HASH_SIZE];
/* hash tables used to do fast duplicate searches in duplicate check */
struct file_info *dupl[65536];
int dup_files = 0;
/* exclude file handling */
/* list of exclude dirs/files */
struct exclude_info {
dev_t st_dev;
ino_t st_ino;
};
#define EXCLUDE_SIZE 8192
int exclude = 0;
struct exclude_info *exclude_paths = NULL;
int old_excluded(char *filename, struct stat *buf);
struct path_entry {
char *name;
regex_t *preg;
struct pathname *paths;
};
struct pathname {
int names;
struct path_entry *name;
};
struct pathnames {
int count;
struct pathname *path[0];
};
#define PATHS_ALLOC_SIZE 10
struct pathnames *paths = NULL;
struct pathname *path = NULL;
struct pathname *stickypath = NULL;
int excluded(char *name, struct pathnames *paths, struct pathnames **new);
int fragments = 0;
#define FRAG_SIZE 32768
struct squashfs_fragment_entry *fragment_table = NULL;
int fragments_outstanding = 0;
int fragments_locked = FALSE;
/* current inode number for directories and non directories */
unsigned int inode_no = 1;
unsigned int root_inode_number = 0;
/* list of source dirs/files */
int source = 0;
char **source_path;
/* list of root directory entries read from original filesystem */
int old_root_entries = 0;
struct old_root_entry_info {
char *name;
struct inode_info inode;
};
struct old_root_entry_info *old_root_entry;
/* restore orignal filesystem state if appending to existing filesystem is
* cancelled */
int appending = FALSE;
char *sdata_cache, *sdirectory_data_cache, *sdirectory_compressed;
long long sbytes, stotal_bytes;
unsigned int sinode_bytes, scache_bytes, sdirectory_bytes,
sdirectory_cache_bytes, sdirectory_compressed_bytes,
stotal_inode_bytes, stotal_directory_bytes,
sinode_count = 0, sfile_count, ssym_count, sdev_count,
sdir_count, sfifo_count, ssock_count, sdup_files;
int sfragments;
int threads;
/* flag whether destination file is a block device */
int block_device = FALSE;
/* flag indicating whether files are sorted using sort list(s) */
int sorted = FALSE;
/* save destination file name for deleting on error */
char *destination_file = NULL;
/* recovery file for abnormal exit on appending */
char *recovery_file = NULL;
int recover = TRUE;
struct id *id_hash_table[ID_ENTRIES];
struct id *id_table[SQUASHFS_IDS], *sid_table[SQUASHFS_IDS];
unsigned int uid_count = 0, guid_count = 0;
unsigned int sid_count = 0, suid_count = 0, sguid_count = 0;
struct cache *reader_buffer, *fragment_buffer, *reserve_cache;
struct cache *bwriter_buffer, *fwriter_buffer;
struct queue *to_reader, *to_deflate, *to_writer, *from_writer,
*to_frag, *locked_fragment, *to_process_frag;
struct seq_queue *to_main;
pthread_t reader_thread, writer_thread, main_thread;
pthread_t *deflator_thread, *frag_deflator_thread, *frag_thread;
pthread_t *restore_thread = NULL;
pthread_mutex_t fragment_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t pos_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t dup_mutex = PTHREAD_MUTEX_INITIALIZER;
/* reproducible image queues and threads */
struct seq_queue *to_order;
pthread_t order_thread;
pthread_cond_t fragment_waiting = PTHREAD_COND_INITIALIZER;
int reproducible = REP_DEF;
/* Root mode option */
int root_mode_opt = FALSE;
mode_t root_mode;
/* Time value over-ride options */
unsigned int mkfs_time;
int mkfs_time_opt = FALSE;
unsigned int all_time;
int all_time_opt = FALSE;
int clamping = TRUE;
/* user options that control parallelisation */
int processors = -1;
int bwriter_size;
/* compression operations */
struct compressor *comp = NULL;
int compressor_opt_parsed = FALSE;
void *stream = NULL;
/* xattr stats */
unsigned int xattr_bytes = 0, total_xattr_bytes = 0;
/* fragment to file mapping used when appending */
int append_fragments = 0;
struct append_file **file_mapping;
/* root of the in-core directory structure */
struct dir_info *root_dir;
/* log file */
FILE *log_fd;
int logging=FALSE;
static char *read_from_disk(long long start, unsigned int avail_bytes);
void add_old_root_entry(char *name, squashfs_inode inode, int inode_number,
int type);
struct file_info *duplicate(long long file_size, long long bytes,
unsigned int **block_list, long long *start, struct fragment **fragment,
struct file_buffer *file_buffer, int blocks, unsigned short checksum,
int checksum_flag);
struct dir_info *dir_scan1(char *, char *, struct pathnames *,
struct dir_ent *(_readdir)(struct dir_info *), int);
void dir_scan2(struct dir_info *dir, struct pseudo *pseudo);
void dir_scan3(struct dir_info *dir);
void dir_scan4(struct dir_info *dir);
void dir_scan5(struct dir_info *dir);
void dir_scan6(struct dir_info *dir);
void dir_scan7(squashfs_inode *inode, struct dir_info *dir_info);
struct file_info *add_non_dup(long long file_size, long long bytes,
unsigned int *block_list, long long start, struct fragment *fragment,
unsigned short checksum, unsigned short fragment_checksum,
int checksum_flag, int checksum_frag_flag);
long long generic_write_table(int, void *, int, void *, int);
void restorefs();
struct dir_info *scan1_opendir(char *pathname, char *subpath, int depth);
void write_filesystem_tables(struct squashfs_super_block *sBlk, int nopad);
unsigned short get_checksum_mem(char *buff, int bytes);
void check_usable_phys_mem(int total_mem);
void prep_exit()
{
if(restore_thread) {
if(pthread_self() == *restore_thread) {
/*
* Recursive failure when trying to restore filesystem!
* Nothing to do except to exit, otherwise we'll just
* appear to hang. The user should be able to restore
* from the recovery file (which is why it was added, in
* case of catastrophic failure in Mksquashfs)
*/
exit(1);
} else {
/* signal the restore thread to restore */
pthread_kill(*restore_thread, SIGUSR1);
pthread_exit(NULL);
}
} else if(delete) {
if(destination_file && !block_device)
unlink(destination_file);
} else if(recovery_file)
unlink(recovery_file);
}
int add_overflow(int a, int b)
{
return (INT_MAX - a) < b;
}
int shift_overflow(int a, int shift)
{
return (INT_MAX >> shift) < a;
}
int multiply_overflow(int a, int multiplier)
{
return (INT_MAX / multiplier) < a;
}
int multiply_overflowll(long long a, int multiplier)
{
return (LLONG_MAX / multiplier) < a;
}
#define MKINODE(A) ((squashfs_inode)(((squashfs_inode) inode_bytes << 16) \
+ (((char *)A) - data_cache)))
void restorefs()
{
ERROR("Exiting - restoring original filesystem!\n\n");
bytes = sbytes;
memcpy(data_cache, sdata_cache, cache_bytes = scache_bytes);
memcpy(directory_data_cache, sdirectory_data_cache,
sdirectory_cache_bytes);
directory_cache_bytes = sdirectory_cache_bytes;
inode_bytes = sinode_bytes;
directory_bytes = sdirectory_bytes;
memcpy(directory_table + directory_bytes, sdirectory_compressed,
sdirectory_compressed_bytes);
directory_bytes += sdirectory_compressed_bytes;
total_bytes = stotal_bytes;
total_inode_bytes = stotal_inode_bytes;
total_directory_bytes = stotal_directory_bytes;
inode_count = sinode_count;
file_count = sfile_count;
sym_count = ssym_count;
dev_count = sdev_count;
dir_count = sdir_count;
fifo_count = sfifo_count;
sock_count = ssock_count;
dup_files = sdup_files;
fragments = sfragments;
id_count = sid_count;
restore_xattrs();
write_filesystem_tables(&sBlk, nopad);
exit(1);
}
void sighandler()
{
EXIT_MKSQUASHFS();
}
int mangle2(void *strm, char *d, char *s, int size,
int block_size, int uncompressed, int data_block)
{
int error, c_byte = 0;
if(!uncompressed) {
c_byte = compressor_compress(comp, strm, d, s, size, block_size,
&error);
if(c_byte == -1)
BAD_ERROR("mangle2:: %s compress failed with error "
"code %d\n", comp->name, error);
}
if(c_byte == 0 || c_byte >= size) {
memcpy(d, s, size);
return size | (data_block ? SQUASHFS_COMPRESSED_BIT_BLOCK :
SQUASHFS_COMPRESSED_BIT);
}
return c_byte;
}
int mangle(char *d, char *s, int size, int block_size,
int uncompressed, int data_block)
{
return mangle2(stream, d, s, size, block_size, uncompressed,
data_block);
}
void *get_inode(int req_size)
{
int data_space;
unsigned short c_byte;
while(cache_bytes >= SQUASHFS_METADATA_SIZE) {
if((inode_size - inode_bytes) <
((SQUASHFS_METADATA_SIZE << 1)) + 2) {
void *it = realloc(inode_table, inode_size +
(SQUASHFS_METADATA_SIZE << 1) + 2);
if(it == NULL)
MEM_ERROR();
inode_table = it;
inode_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
}
c_byte = mangle(inode_table + inode_bytes + BLOCK_OFFSET,
data_cache, SQUASHFS_METADATA_SIZE,
SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Inode block @ 0x%x, size %d\n", inode_bytes, c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte, inode_table + inode_bytes, 1);
inode_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) + BLOCK_OFFSET;
total_inode_bytes += SQUASHFS_METADATA_SIZE + BLOCK_OFFSET;
memmove(data_cache, data_cache + SQUASHFS_METADATA_SIZE,
cache_bytes - SQUASHFS_METADATA_SIZE);
cache_bytes -= SQUASHFS_METADATA_SIZE;
}
data_space = (cache_size - cache_bytes);
if(data_space < req_size) {
int realloc_size = cache_size == 0 ?
((req_size + SQUASHFS_METADATA_SIZE) &
~(SQUASHFS_METADATA_SIZE - 1)) : req_size -
data_space;
void *dc = realloc(data_cache, cache_size +
realloc_size);
if(dc == NULL)
MEM_ERROR();
cache_size += realloc_size;
data_cache = dc;
}
cache_bytes += req_size;
return data_cache + cache_bytes - req_size;
}
int read_bytes(int fd, void *buff, int bytes)
{
int res, count;
for(count = 0; count < bytes; count += res) {
res = read(fd, buff + count, bytes - count);
if(res < 1) {
if(res == 0)
goto bytes_read;
else if(errno != EINTR) {
ERROR("Read failed because %s\n",
strerror(errno));
return -1;
} else
res = 0;
}
}
bytes_read:
return count;
}
int read_fs_bytes(int fd, long long byte, int bytes, void *buff)
{
off_t off = byte;
int res = 1;
TRACE("read_fs_bytes: reading from position 0x%llx, bytes %d\n",
byte, bytes);
pthread_cleanup_push((void *) pthread_mutex_unlock, &pos_mutex);
pthread_mutex_lock(&pos_mutex);
if(lseek(fd, start_offset + off, SEEK_SET) == -1) {
ERROR("read_fs_bytes: Lseek on destination failed because %s, "
"offset=0x%llx\n", strerror(errno), start_offset + off);
res = 0;
} else if(read_bytes(fd, buff, bytes) < bytes) {
ERROR("Read on destination failed\n");
res = 0;
}
pthread_cleanup_pop(1);
return res;
}
int write_bytes(int fd, void *buff, int bytes)
{
int res, count;
for(count = 0; count < bytes; count += res) {
res = write(fd, buff + count, bytes - count);
if(res == -1) {
if(errno != EINTR) {
ERROR("Write failed because %s\n",
strerror(errno));
return -1;
}
res = 0;
}
}
return 0;
}
void write_destination(int fd, long long byte, int bytes, void *buff)
{
off_t off = byte;
pthread_cleanup_push((void *) pthread_mutex_unlock, &pos_mutex);
pthread_mutex_lock(&pos_mutex);
if(lseek(fd, start_offset + off, SEEK_SET) == -1) {
ERROR("write_destination: Lseek on destination "
"failed because %s, offset=0x%llx\n", strerror(errno),
start_offset + off);
BAD_ERROR("Probably out of space on output %s\n",
block_device ? "block device" : "filesystem");
}
if(write_bytes(fd, buff, bytes) == -1)
BAD_ERROR("Failed to write to output %s\n",
block_device ? "block device" : "filesystem");
pthread_cleanup_pop(1);
}
long long write_inodes()
{
unsigned short c_byte;
int avail_bytes;
char *datap = data_cache;
long long start_bytes = bytes;
while(cache_bytes) {
if(inode_size - inode_bytes <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
void *it = realloc(inode_table, inode_size +
((SQUASHFS_METADATA_SIZE << 1) + 2));
if(it == NULL)
MEM_ERROR();
inode_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
inode_table = it;
}
avail_bytes = cache_bytes > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : cache_bytes;
c_byte = mangle(inode_table + inode_bytes + BLOCK_OFFSET, datap,
avail_bytes, SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Inode block @ 0x%x, size %d\n", inode_bytes, c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte, inode_table + inode_bytes, 1);
inode_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) + BLOCK_OFFSET;
total_inode_bytes += avail_bytes + BLOCK_OFFSET;
datap += avail_bytes;
cache_bytes -= avail_bytes;
}
write_destination(fd, bytes, inode_bytes, inode_table);
bytes += inode_bytes;
return start_bytes;
}
long long write_directories()
{
unsigned short c_byte;
int avail_bytes;
char *directoryp = directory_data_cache;
long long start_bytes = bytes;
while(directory_cache_bytes) {
if(directory_size - directory_bytes <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
void *dt = realloc(directory_table,
directory_size + ((SQUASHFS_METADATA_SIZE << 1)
+ 2));
if(dt == NULL)
MEM_ERROR();
directory_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
directory_table = dt;
}
avail_bytes = directory_cache_bytes > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : directory_cache_bytes;
c_byte = mangle(directory_table + directory_bytes +
BLOCK_OFFSET, directoryp, avail_bytes,
SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Directory block @ 0x%x, size %d\n", directory_bytes,
c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte,
directory_table + directory_bytes, 1);
directory_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
total_directory_bytes += avail_bytes + BLOCK_OFFSET;
directoryp += avail_bytes;
directory_cache_bytes -= avail_bytes;
}
write_destination(fd, bytes, directory_bytes, directory_table);
bytes += directory_bytes;
return start_bytes;
}
long long write_id_table()
{
unsigned int id_bytes = SQUASHFS_ID_BYTES(id_count);
unsigned int p[id_count];
int i;
TRACE("write_id_table: ids %d, id_bytes %d\n", id_count, id_bytes);
for(i = 0; i < id_count; i++) {
TRACE("write_id_table: id index %d, id %d", i, id_table[i]->id);
SQUASHFS_SWAP_INTS(&id_table[i]->id, p + i, 1);
}
return generic_write_table(id_bytes, p, 0, NULL, noI || noId);
}
struct id *get_id(unsigned int id)
{
int hash = ID_HASH(id);
struct id *entry = id_hash_table[hash];
for(; entry; entry = entry->next)
if(entry->id == id)
break;
return entry;
}
struct id *create_id(unsigned int id)
{
int hash = ID_HASH(id);
struct id *entry = malloc(sizeof(struct id));
if(entry == NULL)
MEM_ERROR();
entry->id = id;
entry->index = id_count ++;
entry->flags = 0;
entry->next = id_hash_table[hash];
id_hash_table[hash] = entry;
id_table[entry->index] = entry;
return entry;
}
unsigned int get_uid(unsigned int uid)
{
struct id *entry = get_id(uid);
if(entry == NULL) {
if(id_count == SQUASHFS_IDS)
BAD_ERROR("Out of uids!\n");
entry = create_id(uid);
}
if((entry->flags & ISA_UID) == 0) {
entry->flags |= ISA_UID;
uid_count ++;
}
return entry->index;
}
unsigned int get_guid(unsigned int guid)
{
struct id *entry = get_id(guid);
if(entry == NULL) {
if(id_count == SQUASHFS_IDS)
BAD_ERROR("Out of gids!\n");
entry = create_id(guid);
}
if((entry->flags & ISA_GID) == 0) {
entry->flags |= ISA_GID;
guid_count ++;
}
return entry->index;
}
#define ALLOC_SIZE 128
char *_pathname(struct dir_ent *dir_ent, char *pathname, int *size)
{
if(pathname == NULL) {
pathname = malloc(ALLOC_SIZE);
if(pathname == NULL)
MEM_ERROR();
}
for(;;) {
int res = snprintf(pathname, *size, "%s/%s",
dir_ent->our_dir->pathname,
dir_ent->source_name ? : dir_ent->name);
if(res < 0)
BAD_ERROR("snprintf failed in pathname\n");
else if(res >= *size) {
/*
* pathname is too small to contain the result, so
* increase it and try again
*/
*size = (res + ALLOC_SIZE) & ~(ALLOC_SIZE - 1);
pathname = realloc(pathname, *size);
if(pathname == NULL)
MEM_ERROR();
} else
break;
}
return pathname;
}
char *pathname(struct dir_ent *dir_ent)
{
static char *pathname = NULL;
static int size = ALLOC_SIZE;
if (dir_ent->nonstandard_pathname)
return dir_ent->nonstandard_pathname;
return pathname = _pathname(dir_ent, pathname, &size);
}
char *pathname_reader(struct dir_ent *dir_ent)
{
static char *pathname = NULL;
static int size = ALLOC_SIZE;
if (dir_ent->nonstandard_pathname)
return dir_ent->nonstandard_pathname;
return pathname = _pathname(dir_ent, pathname, &size);
}
char *subpathname(struct dir_ent *dir_ent)
{
static char *subpath = NULL;
static int size = ALLOC_SIZE;
int res;
if(subpath == NULL) {
subpath = malloc(ALLOC_SIZE);
if(subpath == NULL)
MEM_ERROR();
}
for(;;) {
if(dir_ent->our_dir->subpath[0] != '\0')
res = snprintf(subpath, size, "%s/%s",
dir_ent->our_dir->subpath, dir_ent->name);
else
res = snprintf(subpath, size, "/%s", dir_ent->name);
if(res < 0)
BAD_ERROR("snprintf failed in subpathname\n");
else if(res >= size) {
/*
* subpath is too small to contain the result, so
* increase it and try again
*/
size = (res + ALLOC_SIZE) & ~(ALLOC_SIZE - 1);
subpath = realloc(subpath, size);
if(subpath == NULL)
MEM_ERROR();
} else
break;
}
return subpath;
}
static inline unsigned int get_inode_no(struct inode_info *inode)
{
return inode->inode_number;
}
static inline unsigned int get_parent_no(struct dir_info *dir)
{
return dir->depth ? get_inode_no(dir->dir_ent->inode) : inode_no;
}
static inline time_t get_time(time_t time)
{
if(all_time_opt) {
if(clamping)
return time > all_time ? all_time : time;
else
return all_time;
}
return time;
}
int create_inode(squashfs_inode *i_no, struct dir_info *dir_info,
struct dir_ent *dir_ent, int type, long long byte_size,
long long start_block, unsigned int offset, unsigned int *block_list,
struct fragment *fragment, struct directory *dir_in, long long sparse)
{
struct stat *buf = &dir_ent->inode->buf;
union squashfs_inode_header inode_header;
struct squashfs_base_inode_header *base = &inode_header.base;
void *inode;
char *filename = pathname(dir_ent);
int nlink = dir_ent->inode->nlink;
int xattr = read_xattrs(dir_ent);
switch(type) {
case SQUASHFS_FILE_TYPE:
if(dir_ent->inode->nlink > 1 ||
byte_size >= (1LL << 32) ||
start_block >= (1LL << 32) ||
sparse || IS_XATTR(xattr))
type = SQUASHFS_LREG_TYPE;
break;
case SQUASHFS_DIR_TYPE:
if(dir_info->dir_is_ldir || IS_XATTR(xattr))
type = SQUASHFS_LDIR_TYPE;
break;
case SQUASHFS_SYMLINK_TYPE:
if(IS_XATTR(xattr))
type = SQUASHFS_LSYMLINK_TYPE;
break;
case SQUASHFS_BLKDEV_TYPE:
if(IS_XATTR(xattr))
type = SQUASHFS_LBLKDEV_TYPE;
break;
case SQUASHFS_CHRDEV_TYPE:
if(IS_XATTR(xattr))
type = SQUASHFS_LCHRDEV_TYPE;
break;
case SQUASHFS_FIFO_TYPE:
if(IS_XATTR(xattr))
type = SQUASHFS_LFIFO_TYPE;
break;
case SQUASHFS_SOCKET_TYPE:
if(IS_XATTR(xattr))
type = SQUASHFS_LSOCKET_TYPE;
break;
}
base->mode = SQUASHFS_MODE(buf->st_mode);
base->uid = get_uid((unsigned int) global_uid == -1 ?
buf->st_uid : global_uid);
base->inode_type = type;
base->guid = get_guid((unsigned int) global_gid == -1 ?
buf->st_gid : global_gid);
base->mtime = get_time(buf->st_mtime);
base->inode_number = get_inode_no(dir_ent->inode);
if(type == SQUASHFS_FILE_TYPE) {
int i;
struct squashfs_reg_inode_header *reg = &inode_header.reg;
size_t off = offsetof(struct squashfs_reg_inode_header, block_list);
inode = get_inode(sizeof(*reg) + offset * sizeof(unsigned int));
reg->file_size = byte_size;
reg->start_block = start_block;
reg->fragment = fragment->index;
reg->offset = fragment->offset;
SQUASHFS_SWAP_REG_INODE_HEADER(reg, inode);
SQUASHFS_SWAP_INTS(block_list, inode + off, offset);
TRACE("File inode, file_size %lld, start_block 0x%llx, blocks "
"%d, fragment %d, offset %d, size %d\n", byte_size,
start_block, offset, fragment->index, fragment->offset,
fragment->size);
for(i = 0; i < offset; i++)
TRACE("Block %d, size %d\n", i, block_list[i]);
}
else if(type == SQUASHFS_LREG_TYPE) {
int i;
struct squashfs_lreg_inode_header *reg = &inode_header.lreg;
size_t off = offsetof(struct squashfs_lreg_inode_header, block_list);
inode = get_inode(sizeof(*reg) + offset * sizeof(unsigned int));
reg->nlink = nlink;
reg->file_size = byte_size;
reg->start_block = start_block;
reg->fragment = fragment->index;
reg->offset = fragment->offset;
if(sparse && sparse >= byte_size)
sparse = byte_size - 1;
reg->sparse = sparse;
reg->xattr = xattr;
SQUASHFS_SWAP_LREG_INODE_HEADER(reg, inode);
SQUASHFS_SWAP_INTS(block_list, inode + off, offset);
TRACE("Long file inode, file_size %lld, start_block 0x%llx, "
"blocks %d, fragment %d, offset %d, size %d, nlink %d"
"\n", byte_size, start_block, offset, fragment->index,
fragment->offset, fragment->size, nlink);
for(i = 0; i < offset; i++)
TRACE("Block %d, size %d\n", i, block_list[i]);
}
else if(type == SQUASHFS_LDIR_TYPE) {
int i;
unsigned char *p;
struct squashfs_ldir_inode_header *dir = &inode_header.ldir;
struct cached_dir_index *index = dir_in->index;
unsigned int i_count = dir_in->i_count;
unsigned int i_size = dir_in->i_size;
if(byte_size >= 1 << 27)
BAD_ERROR("directory greater than 2^27-1 bytes!\n");
inode = get_inode(sizeof(*dir) + i_size);
dir->inode_type = SQUASHFS_LDIR_TYPE;
dir->nlink = dir_ent->dir->directory_count + 2;
dir->file_size = byte_size;
dir->offset = offset;
dir->start_block = start_block;
dir->i_count = i_count;
dir->parent_inode = get_parent_no(dir_ent->our_dir);
dir->xattr = xattr;
SQUASHFS_SWAP_LDIR_INODE_HEADER(dir, inode);
p = inode + offsetof(struct squashfs_ldir_inode_header, index);
for(i = 0; i < i_count; i++) {
SQUASHFS_SWAP_DIR_INDEX(&index[i].index, p);
p += offsetof(struct squashfs_dir_index, name);
memcpy(p, index[i].name, index[i].index.size + 1);
p += index[i].index.size + 1;
}
TRACE("Long directory inode, file_size %lld, start_block "
"0x%llx, offset 0x%x, nlink %d\n", byte_size,
start_block, offset, dir_ent->dir->directory_count + 2);
}
else if(type == SQUASHFS_DIR_TYPE) {
struct squashfs_dir_inode_header *dir = &inode_header.dir;
inode = get_inode(sizeof(*dir));
dir->nlink = dir_ent->dir->directory_count + 2;
dir->file_size = byte_size;
dir->offset = offset;
dir->start_block = start_block;
dir->parent_inode = get_parent_no(dir_ent->our_dir);
SQUASHFS_SWAP_DIR_INODE_HEADER(dir, inode);
TRACE("Directory inode, file_size %lld, start_block 0x%llx, "
"offset 0x%x, nlink %d\n", byte_size, start_block,
offset, dir_ent->dir->directory_count + 2);
}
else if(type == SQUASHFS_CHRDEV_TYPE || type == SQUASHFS_BLKDEV_TYPE) {
struct squashfs_dev_inode_header *dev = &inode_header.dev;
unsigned int major = major(buf->st_rdev);
unsigned int minor = minor(buf->st_rdev);
if(major > 0xfff) {
ERROR("Major %d out of range in device node %s, "
"truncating to %d\n", major, filename,
major & 0xfff);
major &= 0xfff;
}
if(minor > 0xfffff) {
ERROR("Minor %d out of range in device node %s, "
"truncating to %d\n", minor, filename,
minor & 0xfffff);
minor &= 0xfffff;
}
inode = get_inode(sizeof(*dev));
dev->nlink = nlink;
dev->rdev = (major << 8) | (minor & 0xff) |
((minor & ~0xff) << 12);
SQUASHFS_SWAP_DEV_INODE_HEADER(dev, inode);
TRACE("Device inode, rdev 0x%x, nlink %d\n", dev->rdev, nlink);
}
else if(type == SQUASHFS_LCHRDEV_TYPE || type == SQUASHFS_LBLKDEV_TYPE) {
struct squashfs_ldev_inode_header *dev = &inode_header.ldev;
unsigned int major = major(buf->st_rdev);
unsigned int minor = minor(buf->st_rdev);
if(major > 0xfff) {
ERROR("Major %d out of range in device node %s, "
"truncating to %d\n", major, filename,
major & 0xfff);
major &= 0xfff;
}
if(minor > 0xfffff) {
ERROR("Minor %d out of range in device node %s, "
"truncating to %d\n", minor, filename,
minor & 0xfffff);
minor &= 0xfffff;
}
inode = get_inode(sizeof(*dev));
dev->nlink = nlink;
dev->rdev = (major << 8) | (minor & 0xff) |
((minor & ~0xff) << 12);
dev->xattr = xattr;
SQUASHFS_SWAP_LDEV_INODE_HEADER(dev, inode);
TRACE("Device inode, rdev 0x%x, nlink %d\n", dev->rdev, nlink);
}
else if(type == SQUASHFS_SYMLINK_TYPE) {
struct squashfs_symlink_inode_header *symlink = &inode_header.symlink;
int byte = strlen(dir_ent->inode->symlink);
size_t off = offsetof(struct squashfs_symlink_inode_header, symlink);
inode = get_inode(sizeof(*symlink) + byte);
symlink->nlink = nlink;
symlink->symlink_size = byte;
SQUASHFS_SWAP_SYMLINK_INODE_HEADER(symlink, inode);
strncpy(inode + off, dir_ent->inode->symlink, byte);
TRACE("Symbolic link inode, symlink_size %d, nlink %d\n", byte,
nlink);
}
else if(type == SQUASHFS_LSYMLINK_TYPE) {
struct squashfs_symlink_inode_header *symlink = &inode_header.symlink;
int byte = strlen(dir_ent->inode->symlink);
size_t off = offsetof(struct squashfs_symlink_inode_header, symlink);
inode = get_inode(sizeof(*symlink) + byte +
sizeof(unsigned int));
symlink->nlink = nlink;
symlink->symlink_size = byte;
SQUASHFS_SWAP_SYMLINK_INODE_HEADER(symlink, inode);
strncpy(inode + off, dir_ent->inode->symlink, byte);
SQUASHFS_SWAP_INTS(&xattr, inode + off + byte, 1);
TRACE("Symbolic link inode, symlink_size %d, nlink %d\n", byte,
nlink);
}
else if(type == SQUASHFS_FIFO_TYPE || type == SQUASHFS_SOCKET_TYPE) {
struct squashfs_ipc_inode_header *ipc = &inode_header.ipc;
inode = get_inode(sizeof(*ipc));
ipc->nlink = nlink;
SQUASHFS_SWAP_IPC_INODE_HEADER(ipc, inode);
TRACE("ipc inode, type %s, nlink %d\n", type ==
SQUASHFS_FIFO_TYPE ? "fifo" : "socket", nlink);
}
else if(type == SQUASHFS_LFIFO_TYPE || type == SQUASHFS_LSOCKET_TYPE) {
struct squashfs_lipc_inode_header *ipc = &inode_header.lipc;
inode = get_inode(sizeof(*ipc));
ipc->nlink = nlink;
ipc->xattr = xattr;
SQUASHFS_SWAP_LIPC_INODE_HEADER(ipc, inode);
TRACE("ipc inode, type %s, nlink %d\n", type ==
SQUASHFS_FIFO_TYPE ? "fifo" : "socket", nlink);
} else
BAD_ERROR("Unrecognised inode %d in create_inode\n", type);
*i_no = MKINODE(inode);
inode_count ++;
TRACE("Created inode 0x%llx, type %d, uid %d, guid %d\n", *i_no, type,
base->uid, base->guid);
return TRUE;
}
void add_dir(squashfs_inode inode, unsigned int inode_number, char *name,
int type, struct directory *dir)
{
unsigned char *buff;
struct squashfs_dir_entry idir;
unsigned int start_block = inode >> 16;
unsigned int offset = inode & 0xffff;
unsigned int size = strlen(name);
size_t name_off = offsetof(struct squashfs_dir_entry, name);
if(size > SQUASHFS_NAME_LEN) {
size = SQUASHFS_NAME_LEN;
ERROR("Filename is greater than %d characters, truncating! ..."
"\n", SQUASHFS_NAME_LEN);
}
if(dir->p + sizeof(struct squashfs_dir_entry) + size +
sizeof(struct squashfs_dir_header)
>= dir->buff + dir->size) {
buff = realloc(dir->buff, dir->size += SQUASHFS_METADATA_SIZE);
if(buff == NULL)
MEM_ERROR();
dir->p = (dir->p - dir->buff) + buff;
if(dir->entry_count_p)
dir->entry_count_p = (dir->entry_count_p - dir->buff +
buff);
dir->index_count_p = dir->index_count_p - dir->buff + buff;
dir->buff = buff;
}
if(dir->entry_count == 256 || start_block != dir->start_block ||
((dir->entry_count_p != NULL) &&
((dir->p + sizeof(struct squashfs_dir_entry) + size -
dir->index_count_p) > SQUASHFS_METADATA_SIZE)) ||
((long long) inode_number - dir->inode_number) > 32767
|| ((long long) inode_number - dir->inode_number)
< -32768) {
if(dir->entry_count_p) {
struct squashfs_dir_header dir_header;
if((dir->p + sizeof(struct squashfs_dir_entry) + size -
dir->index_count_p) >
SQUASHFS_METADATA_SIZE) {
if(dir->i_count % I_COUNT_SIZE == 0) {
dir->index = realloc(dir->index,
(dir->i_count + I_COUNT_SIZE) *
sizeof(struct cached_dir_index));
if(dir->index == NULL)
MEM_ERROR();
}
dir->index[dir->i_count].index.index =
dir->p - dir->buff;
dir->index[dir->i_count].index.size = size - 1;
dir->index[dir->i_count++].name = name;
dir->i_size += sizeof(struct squashfs_dir_index)
+ size;
dir->index_count_p = dir->p;
}
dir_header.count = dir->entry_count - 1;
dir_header.start_block = dir->start_block;
dir_header.inode_number = dir->inode_number;
SQUASHFS_SWAP_DIR_HEADER(&dir_header,
dir->entry_count_p);
}
dir->entry_count_p = dir->p;
dir->start_block = start_block;
dir->entry_count = 0;
dir->inode_number = inode_number;
dir->p += sizeof(struct squashfs_dir_header);
}
idir.offset = offset;
idir.type = type;
idir.size = size - 1;
idir.inode_number = ((long long) inode_number - dir->inode_number);
SQUASHFS_SWAP_DIR_ENTRY(&idir, dir->p);
strncpy((char *) dir->p + name_off, name, size);
dir->p += sizeof(struct squashfs_dir_entry) + size;
dir->entry_count ++;
}
void write_dir(squashfs_inode *inode, struct dir_info *dir_info,
struct directory *dir)
{
unsigned int dir_size = dir->p - dir->buff;
int data_space = directory_cache_size - directory_cache_bytes;
unsigned int directory_block, directory_offset, i_count, index;
unsigned short c_byte;
if(data_space < dir_size) {
int realloc_size = directory_cache_size == 0 ?
((dir_size + SQUASHFS_METADATA_SIZE) &
~(SQUASHFS_METADATA_SIZE - 1)) : dir_size - data_space;
void *dc = realloc(directory_data_cache,
directory_cache_size + realloc_size);
if(dc == NULL)
MEM_ERROR();
directory_cache_size += realloc_size;
directory_data_cache = dc;
}
if(dir_size) {
struct squashfs_dir_header dir_header;
dir_header.count = dir->entry_count - 1;
dir_header.start_block = dir->start_block;
dir_header.inode_number = dir->inode_number;
SQUASHFS_SWAP_DIR_HEADER(&dir_header, dir->entry_count_p);
memcpy(directory_data_cache + directory_cache_bytes, dir->buff,
dir_size);
}
directory_offset = directory_cache_bytes;
directory_block = directory_bytes;
directory_cache_bytes += dir_size;
i_count = 0;
index = SQUASHFS_METADATA_SIZE - directory_offset;
while(1) {
while(i_count < dir->i_count &&
dir->index[i_count].index.index < index)
dir->index[i_count++].index.start_block =
directory_bytes;
index += SQUASHFS_METADATA_SIZE;
if(directory_cache_bytes < SQUASHFS_METADATA_SIZE)
break;
if((directory_size - directory_bytes) <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
void *dt = realloc(directory_table,
directory_size + (SQUASHFS_METADATA_SIZE << 1)
+ 2);
if(dt == NULL)
MEM_ERROR();
directory_size += SQUASHFS_METADATA_SIZE << 1;
directory_table = dt;
}
c_byte = mangle(directory_table + directory_bytes +
BLOCK_OFFSET, directory_data_cache,
SQUASHFS_METADATA_SIZE, SQUASHFS_METADATA_SIZE,
noI, 0);
TRACE("Directory block @ 0x%x, size %d\n", directory_bytes,
c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte,
directory_table + directory_bytes, 1);
directory_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
total_directory_bytes += SQUASHFS_METADATA_SIZE + BLOCK_OFFSET;
memmove(directory_data_cache, directory_data_cache +
SQUASHFS_METADATA_SIZE, directory_cache_bytes -
SQUASHFS_METADATA_SIZE);
directory_cache_bytes -= SQUASHFS_METADATA_SIZE;
}
create_inode(inode, dir_info, dir_info->dir_ent, SQUASHFS_DIR_TYPE,
dir_size + 3, directory_block, directory_offset, NULL, NULL,
dir, 0);
#ifdef SQUASHFS_TRACE
{
unsigned char *dirp;
int count;
TRACE("Directory contents of inode 0x%llx\n", *inode);
dirp = dir->buff;
while(dirp < dir->p) {
char buffer[SQUASHFS_NAME_LEN + 1];
struct squashfs_dir_entry idir, *idirp;
struct squashfs_dir_header dirh;
SQUASHFS_SWAP_DIR_HEADER((struct squashfs_dir_header *) dirp,
&dirh);
count = dirh.count + 1;
dirp += sizeof(struct squashfs_dir_header);
TRACE("\tStart block 0x%x, count %d\n",
dirh.start_block, count);
while(count--) {
idirp = (struct squashfs_dir_entry *) dirp;
SQUASHFS_SWAP_DIR_ENTRY(idirp, &idir);
strncpy(buffer, idirp->name, idir.size + 1);
buffer[idir.size + 1] = '\0';
TRACE("\t\tname %s, inode offset 0x%x, type "
"%d\n", buffer, idir.offset, idir.type);
dirp += sizeof(struct squashfs_dir_entry) + idir.size +
1;
}
}
}
#endif
dir_count ++;
}
static struct file_buffer *get_fragment(struct fragment *fragment)
{
struct squashfs_fragment_entry *disk_fragment;
struct file_buffer *buffer, *compressed_buffer;
long long start_block;
int res, size, index = fragment->index;
char locked;
/*
* Lookup fragment block in cache.
* If the fragment block doesn't exist, then get the compressed version
* from the writer cache or off disk, and decompress it.
*
* This routine has two things which complicate the code:
*
* 1. Multiple threads can simultaneously lookup/create the
* same buffer. This means a buffer needs to be "locked"
* when it is being filled in, to prevent other threads from
* using it when it is not ready. This is because we now do
* fragment duplicate checking in parallel.
* 2. We have two caches which need to be checked for the
* presence of fragment blocks: the normal fragment cache
* and a "reserve" cache. The reserve cache is used to
* prevent an unnecessary pipeline stall when the fragment cache
* is full of fragments waiting to be compressed.
*/
if(fragment->index == SQUASHFS_INVALID_FRAG)
return NULL;
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
pthread_mutex_lock(&dup_mutex);
again:
buffer = cache_lookup_nowait(fragment_buffer, index, &locked);
if(buffer) {
pthread_mutex_unlock(&dup_mutex);
if(locked)
/* got a buffer being filled in. Wait for it */
cache_wait_unlock(buffer);
goto finished;
}
/* not in fragment cache, is it in the reserve cache? */
buffer = cache_lookup_nowait(reserve_cache, index, &locked);
if(buffer) {
pthread_mutex_unlock(&dup_mutex);
if(locked)
/* got a buffer being filled in. Wait for it */
cache_wait_unlock(buffer);
goto finished;
}
/* in neither cache, try to get it from the fragment cache */
buffer = cache_get_nowait(fragment_buffer, index);
if(!buffer) {
/*
* no room, get it from the reserve cache, this is
* dimensioned so it will always have space (no more than
* processors + 1 can have an outstanding reserve buffer)
*/
buffer = cache_get_nowait(reserve_cache, index);
if(!buffer) {
/* failsafe */
ERROR("no space in reserve cache\n");
goto again;
}
}
pthread_mutex_unlock(&dup_mutex);
compressed_buffer = cache_lookup(fwriter_buffer, index);
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
disk_fragment = &fragment_table[index];
size = SQUASHFS_COMPRESSED_SIZE_BLOCK(disk_fragment->size);
start_block = disk_fragment->start_block;
pthread_cleanup_pop(1);
if(SQUASHFS_COMPRESSED_BLOCK(disk_fragment->size)) {
int error;
char *data;
if(compressed_buffer)
data = compressed_buffer->data;
else {
data = read_from_disk(start_block, size);
if(data == NULL) {
ERROR("Failed to read fragment from output"
" filesystem\n");
BAD_ERROR("Output filesystem corrupted?\n");
}
}
res = compressor_uncompress(comp, buffer->data, data, size,
block_size, &error);
if(res == -1)
BAD_ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
} else if(compressed_buffer)
memcpy(buffer->data, compressed_buffer->data, size);
else {
res = read_fs_bytes(fd, start_block, size, buffer->data);
if(res == 0) {
ERROR("Failed to read fragment from output "
"filesystem\n");
BAD_ERROR("Output filesystem corrupted?\n");
}
}
cache_unlock(buffer);
cache_block_put(compressed_buffer);
finished:
pthread_cleanup_pop(0);
return buffer;
}
unsigned short get_fragment_checksum(struct file_info *file)
{
struct file_buffer *frag_buffer;
struct append_file *append;
int res, index = file->fragment->index;
unsigned short checksum;
if(index == SQUASHFS_INVALID_FRAG)
return 0;
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
pthread_mutex_lock(&dup_mutex);
res = file->have_frag_checksum;
checksum = file->fragment_checksum;
pthread_cleanup_pop(1);
if(res)
return checksum;
frag_buffer = get_fragment(file->fragment);
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
for(append = file_mapping[index]; append; append = append->next) {
int offset = append->file->fragment->offset;
int size = append->file->fragment->size;
unsigned short cksum =
get_checksum_mem(frag_buffer->data + offset, size);
if(file == append->file)
checksum = cksum;
pthread_mutex_lock(&dup_mutex);
append->file->fragment_checksum = cksum;
append->file->have_frag_checksum = TRUE;
pthread_mutex_unlock(&dup_mutex);
}
cache_block_put(frag_buffer);
pthread_cleanup_pop(0);
return checksum;
}
void ensure_fragments_flushed()
{
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
while(fragments_outstanding)
pthread_cond_wait(&fragment_waiting, &fragment_mutex);
pthread_cleanup_pop(1);
}
void lock_fragments()
{
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
fragments_locked = TRUE;
pthread_cleanup_pop(1);
}
void log_fragment(unsigned int fragment, long long start)
{
if(logging)
fprintf(log_fd, "Fragment %u, %lld\n", fragment, start);
}
void unlock_fragments()
{
int frg, size;
struct file_buffer *write_buffer;
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
/*
* Note queue_empty() is inherently racy with respect to concurrent
* queue get and pushes. We avoid this because we're holding the
* fragment_mutex which ensures no other threads can be using the
* queue at this time.
*/
while(!queue_empty(locked_fragment)) {
write_buffer = queue_get(locked_fragment);
frg = write_buffer->block;
size = SQUASHFS_COMPRESSED_SIZE_BLOCK(fragment_table[frg].size);
fragment_table[frg].start_block = bytes;
write_buffer->block = bytes;
bytes += size;
fragments_outstanding --;
queue_put(to_writer, write_buffer);
log_fragment(frg, fragment_table[frg].start_block);
TRACE("fragment_locked writing fragment %d, compressed size %d"
"\n", frg, size);
}
fragments_locked = FALSE;
pthread_cleanup_pop(1);
}
/* Called with the fragment_mutex locked */
void add_pending_fragment(struct file_buffer *write_buffer, int c_byte,
int fragment)
{
fragment_table[fragment].size = c_byte;
write_buffer->block = fragment;
queue_put(locked_fragment, write_buffer);
}
void write_fragment(struct file_buffer *fragment)
{
static long long sequence = 0;
if(fragment == NULL)
return;
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
fragment_table[fragment->block].unused = 0;
fragment->sequence = sequence ++;
fragments_outstanding ++;
queue_put(to_frag, fragment);
pthread_cleanup_pop(1);
}
struct file_buffer *allocate_fragment()
{
struct file_buffer *fragment = cache_get(fragment_buffer, fragments);
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
if(fragments % FRAG_SIZE == 0) {
void *ft = realloc(fragment_table, (fragments +
FRAG_SIZE) * sizeof(struct squashfs_fragment_entry));
if(ft == NULL)
MEM_ERROR();
fragment_table = ft;
}
fragment->size = 0;
fragment->block = fragments ++;
pthread_cleanup_pop(1);
return fragment;
}
static struct fragment empty_fragment = {SQUASHFS_INVALID_FRAG, 0, 0};
void free_fragment(struct fragment *fragment)
{
if(fragment != &empty_fragment)
free(fragment);
}
struct fragment *get_and_fill_fragment(struct file_buffer *file_buffer,
struct dir_ent *dir_ent)
{
struct fragment *ffrg;
struct file_buffer **fragment;
if(file_buffer == NULL || file_buffer->size == 0)
return &empty_fragment;
fragment = eval_frag_actions(root_dir, dir_ent);
if((*fragment) && (*fragment)->size + file_buffer->size > block_size) {
write_fragment(*fragment);
*fragment = NULL;
}
ffrg = malloc(sizeof(struct fragment));
if(ffrg == NULL)
MEM_ERROR();
if(*fragment == NULL)
*fragment = allocate_fragment();
ffrg->index = (*fragment)->block;
ffrg->offset = (*fragment)->size;
ffrg->size = file_buffer->size;
memcpy((*fragment)->data + (*fragment)->size, file_buffer->data,
file_buffer->size);
(*fragment)->size += file_buffer->size;
return ffrg;
}
long long generic_write_table(int length, void *buffer, int length2,
void *buffer2, int uncompressed)
{
int meta_blocks = (length + SQUASHFS_METADATA_SIZE - 1) /
SQUASHFS_METADATA_SIZE;
long long *list, start_bytes;
int compressed_size, i, list_size = meta_blocks * sizeof(long long);
unsigned short c_byte;
char cbuffer[(SQUASHFS_METADATA_SIZE << 2) + 2];
#ifdef SQUASHFS_TRACE
long long obytes = bytes;
int olength = length;
#endif
list = malloc(list_size);
if(list == NULL)
MEM_ERROR();
for(i = 0; i < meta_blocks; i++) {
int avail_bytes = length > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : length;
c_byte = mangle(cbuffer + BLOCK_OFFSET, buffer + i *
SQUASHFS_METADATA_SIZE , avail_bytes,
SQUASHFS_METADATA_SIZE, uncompressed, 0);
SQUASHFS_SWAP_SHORTS(&c_byte, cbuffer, 1);
list[i] = bytes;
compressed_size = SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
TRACE("block %d @ 0x%llx, compressed size %d\n", i, bytes,
compressed_size);
write_destination(fd, bytes, compressed_size, cbuffer);
bytes += compressed_size;
total_bytes += avail_bytes;
length -= avail_bytes;
}
start_bytes = bytes;
if(length2) {
write_destination(fd, bytes, length2, buffer2);
bytes += length2;
total_bytes += length2;
}
SQUASHFS_INSWAP_LONG_LONGS(list, meta_blocks);
write_destination(fd, bytes, list_size, list);
bytes += list_size;
total_bytes += list_size;
TRACE("generic_write_table: total uncompressed %d compressed %lld\n",
olength, bytes - obytes);
free(list);
return start_bytes;
}
long long write_fragment_table()
{
unsigned int frag_bytes = SQUASHFS_FRAGMENT_BYTES(fragments);
int i;
TRACE("write_fragment_table: fragments %d, frag_bytes %d\n", fragments,
frag_bytes);
for(i = 0; i < fragments; i++) {
TRACE("write_fragment_table: fragment %d, start_block 0x%llx, "
"size %d\n", i, fragment_table[i].start_block,
fragment_table[i].size);
SQUASHFS_INSWAP_FRAGMENT_ENTRY(&fragment_table[i]);
}
return generic_write_table(frag_bytes, fragment_table, 0, NULL, noF);
}
char read_from_file_buffer[SQUASHFS_FILE_MAX_SIZE];
static char *read_from_disk(long long start, unsigned int avail_bytes)
{
int res;
res = read_fs_bytes(fd, start, avail_bytes, read_from_file_buffer);
if(res == 0)
return NULL;
return read_from_file_buffer;
}
char read_from_file_buffer2[SQUASHFS_FILE_MAX_SIZE];
char *read_from_disk2(long long start, unsigned int avail_bytes)
{
int res;
res = read_fs_bytes(fd, start, avail_bytes, read_from_file_buffer2);
if(res == 0)
return NULL;
return read_from_file_buffer2;
}
/*
* Compute 16 bit BSD checksum over the data
*/
unsigned short get_checksum(char *buff, int bytes, unsigned short chksum)
{
unsigned char *b = (unsigned char *) buff;
while(bytes --) {
chksum = (chksum & 1) ? (chksum >> 1) | 0x8000 : chksum >> 1;
chksum += *b++;
}
return chksum;
}
unsigned short get_checksum_disk(long long start, long long l,
unsigned int *blocks)
{
unsigned short chksum = 0;
unsigned int bytes;
struct file_buffer *write_buffer;
int i;
for(i = 0; l; i++) {
bytes = SQUASHFS_COMPRESSED_SIZE_BLOCK(blocks[i]);
if(bytes == 0) /* sparse block */
continue;
write_buffer = cache_lookup(bwriter_buffer, start);
if(write_buffer) {
chksum = get_checksum(write_buffer->data, bytes,
chksum);
cache_block_put(write_buffer);
} else {
void *data = read_from_disk(start, bytes);
if(data == NULL) {
ERROR("Failed to checksum data from output"
" filesystem\n");
BAD_ERROR("Output filesystem corrupted?\n");
}
chksum = get_checksum(data, bytes, chksum);
}
l -= bytes;
start += bytes;
}
return chksum;
}
unsigned short get_checksum_mem(char *buff, int bytes)
{
return get_checksum(buff, bytes, 0);
}
unsigned short get_checksum_mem_buffer(struct file_buffer *file_buffer)
{
if(file_buffer == NULL)
return 0;
else
return get_checksum(file_buffer->data, file_buffer->size, 0);
}
#define DUP_HASH(a) (a & 0xffff)
void add_file(long long start, long long file_size, long long file_bytes,
unsigned int *block_listp, int blocks, unsigned int fragment,
int offset, int bytes)
{
struct fragment *frg;
unsigned int *block_list = block_listp;
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
struct append_file *append_file;
struct file_info *file;
if(!duplicate_checking || file_size == 0)
return;
for(; dupl_ptr; dupl_ptr = dupl_ptr->next) {
if(file_size != dupl_ptr->file_size)
continue;
if(blocks != 0 && start != dupl_ptr->start)
continue;
if(fragment != dupl_ptr->fragment->index)
continue;
if(fragment != SQUASHFS_INVALID_FRAG && (offset !=
dupl_ptr->fragment->offset || bytes !=
dupl_ptr->fragment->size))
continue;
return;
}
frg = malloc(sizeof(struct fragment));
if(frg == NULL)
MEM_ERROR();
frg->index = fragment;
frg->offset = offset;
frg->size = bytes;
file = add_non_dup(file_size, file_bytes, block_list, start, frg, 0, 0,
FALSE, FALSE);
if(fragment == SQUASHFS_INVALID_FRAG)
return;
append_file = malloc(sizeof(struct append_file));
if(append_file == NULL)
MEM_ERROR();
append_file->file = file;
append_file->next = file_mapping[fragment];
file_mapping[fragment] = append_file;
}
int pre_duplicate(long long file_size)
{
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
for(; dupl_ptr; dupl_ptr = dupl_ptr->next)
if(dupl_ptr->file_size == file_size)
return TRUE;
return FALSE;
}
struct file_info *add_non_dup(long long file_size, long long bytes,
unsigned int *block_list, long long start, struct fragment *fragment,
unsigned short checksum, unsigned short fragment_checksum,
int checksum_flag, int checksum_frag_flag)
{
struct file_info *dupl_ptr = malloc(sizeof(struct file_info));
if(dupl_ptr == NULL)
MEM_ERROR();
dupl_ptr->file_size = file_size;
dupl_ptr->bytes = bytes;
dupl_ptr->block_list = block_list;
dupl_ptr->start = start;
dupl_ptr->fragment = fragment;
dupl_ptr->checksum = checksum;
dupl_ptr->fragment_checksum = fragment_checksum;
dupl_ptr->have_frag_checksum = checksum_frag_flag;
dupl_ptr->have_checksum = checksum_flag;
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
pthread_mutex_lock(&dup_mutex);
dupl_ptr->next = dupl[DUP_HASH(file_size)];
dupl[DUP_HASH(file_size)] = dupl_ptr;
dup_files ++;
pthread_cleanup_pop(1);
return dupl_ptr;
}
struct fragment *frag_duplicate(struct file_buffer *file_buffer, char *dont_put)
{
struct file_info *dupl_ptr;
struct file_buffer *buffer;
struct file_info *dupl_start = file_buffer->dupl_start;
long long file_size = file_buffer->file_size;
unsigned short checksum = file_buffer->checksum;
int res;
if(file_buffer->duplicate) {
TRACE("Found duplicate file, fragment %d, size %d, offset %d, "
"checksum 0x%x\n", dupl_start->fragment->index,
file_size, dupl_start->fragment->offset, checksum);
*dont_put = TRUE;
return dupl_start->fragment;
} else {
*dont_put = FALSE;
dupl_ptr = dupl[DUP_HASH(file_size)];
}
for(; dupl_ptr && dupl_ptr != dupl_start; dupl_ptr = dupl_ptr->next) {
if(file_size == dupl_ptr->file_size && file_size ==
dupl_ptr->fragment->size) {
if(get_fragment_checksum(dupl_ptr) == checksum) {
buffer = get_fragment(dupl_ptr->fragment);
res = memcmp(file_buffer->data, buffer->data +
dupl_ptr->fragment->offset, file_size);
cache_block_put(buffer);
if(res == 0)
break;
}
}
}
if(!dupl_ptr || dupl_ptr == dupl_start)
return NULL;
TRACE("Found duplicate file, fragment %d, size %d, offset %d, "
"checksum 0x%x\n", dupl_ptr->fragment->index, file_size,
dupl_ptr->fragment->offset, checksum);
return dupl_ptr->fragment;
}
struct file_info *duplicate(long long file_size, long long bytes,
unsigned int **block_list, long long *start, struct fragment **fragment,
struct file_buffer *file_buffer, int blocks, unsigned short checksum,
int checksum_flag)
{
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
int frag_bytes = file_buffer ? file_buffer->size : 0;
unsigned short fragment_checksum = file_buffer ?
file_buffer->checksum : 0;
for(; dupl_ptr; dupl_ptr = dupl_ptr->next)
if(file_size == dupl_ptr->file_size && bytes == dupl_ptr->bytes
&& frag_bytes == dupl_ptr->fragment->size) {
long long target_start, dup_start = dupl_ptr->start;
int block;
if(memcmp(*block_list, dupl_ptr->block_list, blocks *
sizeof(unsigned int)) != 0)
continue;
if(checksum_flag == FALSE) {
checksum = get_checksum_disk(*start, bytes,
*block_list);
checksum_flag = TRUE;
}
if(!dupl_ptr->have_checksum) {
dupl_ptr->checksum =
get_checksum_disk(dupl_ptr->start,
dupl_ptr->bytes, dupl_ptr->block_list);
dupl_ptr->have_checksum = TRUE;
}
if(checksum != dupl_ptr->checksum ||
fragment_checksum !=
get_fragment_checksum(dupl_ptr))
continue;
target_start = *start;
for(block = 0; block < blocks; block ++) {
int size = SQUASHFS_COMPRESSED_SIZE_BLOCK
((*block_list)[block]);
struct file_buffer *target_buffer = NULL;
struct file_buffer *dup_buffer = NULL;
char *target_data, *dup_data;
int res;
if(size == 0)
continue;
target_buffer = cache_lookup(bwriter_buffer,
target_start);
if(target_buffer)
target_data = target_buffer->data;
else {
target_data =
read_from_disk(target_start,
size);
if(target_data == NULL) {
ERROR("Failed to read data from"
" output filesystem\n");
BAD_ERROR("Output filesystem"
" corrupted?\n");
}
}
dup_buffer = cache_lookup(bwriter_buffer,
dup_start);
if(dup_buffer)
dup_data = dup_buffer->data;
else {
dup_data = read_from_disk2(dup_start,
size);
if(dup_data == NULL) {
ERROR("Failed to read data from"
" output filesystem\n");
BAD_ERROR("Output filesystem"
" corrupted?\n");
}
}
res = memcmp(target_data, dup_data, size);
cache_block_put(target_buffer);
cache_block_put(dup_buffer);
if(res != 0)
break;
target_start += size;
dup_start += size;
}
if(block == blocks) {
struct file_buffer *frag_buffer =
get_fragment(dupl_ptr->fragment);
if(frag_bytes == 0 ||
memcmp(file_buffer->data,
frag_buffer->data +
dupl_ptr->fragment->offset,
frag_bytes) == 0) {
TRACE("Found duplicate file, start "
"0x%llx, size %lld, checksum "
"0x%x, fragment %d, size %d, "
"offset %d, checksum 0x%x\n",
dupl_ptr->start,
dupl_ptr->bytes,
dupl_ptr->checksum,
dupl_ptr->fragment->index,
frag_bytes,
dupl_ptr->fragment->offset,
fragment_checksum);
*block_list = dupl_ptr->block_list;
*start = dupl_ptr->start;
*fragment = dupl_ptr->fragment;
cache_block_put(frag_buffer);
return 0;
}
cache_block_put(frag_buffer);
}
}
return add_non_dup(file_size, bytes, *block_list, *start, *fragment,
checksum, fragment_checksum, checksum_flag, TRUE);
}
static inline int is_fragment(struct inode_info *inode)
{
off_t file_size = inode->buf.st_size;
/*
* If this block is to be compressed differently to the
* fragment compression then it cannot be a fragment
*/
if(inode->noF != noF)
return FALSE;
return !inode->no_fragments && file_size && (file_size < block_size ||
(inode->always_use_fragments && file_size & (block_size - 1)));
}
void put_file_buffer(struct file_buffer *file_buffer)
{
/*
* Decide where to send the file buffer:
* - compressible non-fragment blocks go to the deflate threads,
* - fragments go to the process fragment threads,
* - all others go directly to the main thread
*/
if(file_buffer->error) {
file_buffer->fragment = 0;
seq_queue_put(to_main, file_buffer);
} else if (file_buffer->file_size == 0)
seq_queue_put(to_main, file_buffer);
else if(file_buffer->fragment)
queue_put(to_process_frag, file_buffer);
else
queue_put(to_deflate, file_buffer);
}
static int seq = 0;
void reader_read_process(struct dir_ent *dir_ent)
{
long long bytes = 0;
struct inode_info *inode = dir_ent->inode;
struct file_buffer *prev_buffer = NULL, *file_buffer;
int status, byte, res, child;
int file = pseudo_exec_file(get_pseudo_file(inode->pseudo_id), &child);
if(!file) {
file_buffer = cache_get_nohash(reader_buffer);
file_buffer->sequence = seq ++;
goto read_err;
}
while(1) {
file_buffer = cache_get_nohash(reader_buffer);
file_buffer->sequence = seq ++;
file_buffer->noD = inode->noD;
byte = read_bytes(file, file_buffer->data, block_size);
if(byte == -1)
goto read_err2;
file_buffer->size = byte;
file_buffer->file_size = -1;
file_buffer->error = FALSE;
file_buffer->fragment = FALSE;
bytes += byte;
if(byte == 0)
break;
/*
* Update progress bar size. This is done
* on every block rather than waiting for all blocks to be
* read incase write_file_process() is running in parallel
* with this. Otherwise the current progress bar position
* may get ahead of the progress bar size.
*/
progress_bar_size(1);
if(prev_buffer)
put_file_buffer(prev_buffer);
prev_buffer = file_buffer;
}
/*
* Update inode file size now that the size of the dynamic pseudo file
* is known. This is needed for the -info option.
*/
inode->buf.st_size = bytes;
res = waitpid(child, &status, 0);
close(file);
if(res == -1 || !WIFEXITED(status) || WEXITSTATUS(status) != 0)
goto read_err;
if(prev_buffer == NULL)
prev_buffer = file_buffer;
else {
cache_block_put(file_buffer);
seq --;
}
prev_buffer->file_size = bytes;
prev_buffer->fragment = is_fragment(inode);
put_file_buffer(prev_buffer);
return;
read_err2:
close(file);
read_err:
if(prev_buffer) {
cache_block_put(file_buffer);
seq --;
file_buffer = prev_buffer;
}
file_buffer->error = TRUE;
put_file_buffer(file_buffer);
}
void reader_read_file(struct dir_ent *dir_ent)
{
struct stat *buf = &dir_ent->inode->buf, buf2;
struct file_buffer *file_buffer;
int blocks, file, res;
long long bytes, read_size;
struct inode_info *inode = dir_ent->inode;
if(inode->read)
return;
inode->read = TRUE;
again:
bytes = 0;
read_size = buf->st_size;
blocks = (read_size + block_size - 1) >> block_log;
file = open(pathname_reader(dir_ent), O_RDONLY);
if(file == -1) {
file_buffer = cache_get_nohash(reader_buffer);
file_buffer->sequence = seq ++;
goto read_err2;
}
do {
file_buffer = cache_get_nohash(reader_buffer);
file_buffer->file_size = read_size;
file_buffer->sequence = seq ++;
file_buffer->noD = inode->noD;
file_buffer->error = FALSE;
/*
* Always try to read block_size bytes from the file rather
* than expected bytes (which will be less than the block_size
* at the file tail) to check that the file hasn't grown
* since being stated. If it is longer (or shorter) than
* expected, then restat, and try again. Note the special
* case where the file is an exact multiple of the block_size
* is dealt with later.
*/
file_buffer->size = read_bytes(file, file_buffer->data,
block_size);
if(file_buffer->size == -1)
goto read_err;
bytes += file_buffer->size;
if(blocks > 1) {
/* non-tail block should be exactly block_size */
if(file_buffer->size < block_size)
goto restat;
file_buffer->fragment = FALSE;
put_file_buffer(file_buffer);
}
} while(-- blocks > 0);
/* Overall size including tail should match */
if(read_size != bytes)
goto restat;
if(read_size && read_size % block_size == 0) {
/*
* Special case where we've not tried to read past the end of
* the file. We expect to get EOF, i.e. the file isn't larger
* than we expect.
*/
char buffer;
int res;
res = read_bytes(file, &buffer, 1);
if(res == -1)
goto read_err;
if(res != 0)
goto restat;
}
file_buffer->fragment = is_fragment(inode);
put_file_buffer(file_buffer);
close(file);
return;
restat:
res = fstat(file, &buf2);
if(res == -1) {
ERROR("Cannot stat dir/file %s because %s\n",
pathname_reader(dir_ent), strerror(errno));
goto read_err;
}
if(read_size != buf2.st_size) {
close(file);
memcpy(buf, &buf2, sizeof(struct stat));
file_buffer->error = 2;
put_file_buffer(file_buffer);
goto again;
}
read_err:
close(file);
read_err2:
file_buffer->error = TRUE;
put_file_buffer(file_buffer);
}
void reader_scan(struct dir_info *dir) {
struct dir_ent *dir_ent = dir->list;
for(; dir_ent; dir_ent = dir_ent->next) {
struct stat *buf = &dir_ent->inode->buf;
if(dir_ent->inode->root_entry)
continue;
if(IS_PSEUDO_PROCESS(dir_ent->inode)) {
reader_read_process(dir_ent);
continue;
}
switch(buf->st_mode & S_IFMT) {
case S_IFREG:
reader_read_file(dir_ent);
break;
case S_IFDIR:
reader_scan(dir_ent->dir);
break;
}
}
}
void *reader(void *arg)
{
if(!sorted)
reader_scan(queue_get(to_reader));
else {
int i;
struct priority_entry *entry;
queue_get(to_reader);
for(i = 65535; i >= 0; i--)
for(entry = priority_list[i]; entry;
entry = entry->next)
reader_read_file(entry->dir);
}
pthread_exit(NULL);
}
void *writer(void *arg)
{
while(1) {
struct file_buffer *file_buffer = queue_get(to_writer);
off_t off;
if(file_buffer == NULL) {
queue_put(from_writer, NULL);
continue;
}
off = file_buffer->block;
pthread_cleanup_push((void *) pthread_mutex_unlock, &pos_mutex);
pthread_mutex_lock(&pos_mutex);
if(lseek(fd, start_offset + off, SEEK_SET) == -1) {
ERROR("writer: Lseek on destination failed because "
"%s, offset=0x%llx\n", strerror(errno), start_offset + off);
BAD_ERROR("Probably out of space on output "
"%s\n", block_device ? "block device" :
"filesystem");
}
if(write_bytes(fd, file_buffer->data,
file_buffer->size) == -1)
BAD_ERROR("Failed to write to output %s\n",
block_device ? "block device" : "filesystem");
pthread_cleanup_pop(1);
cache_block_put(file_buffer);
}
}
int all_zero(struct file_buffer *file_buffer)
{
int i;
long entries = file_buffer->size / sizeof(long);
long *p = (long *) file_buffer->data;
for(i = 0; i < entries && p[i] == 0; i++);
if(i == entries) {
for(i = file_buffer->size & ~(sizeof(long) - 1);
i < file_buffer->size && file_buffer->data[i] == 0;
i++);
return i == file_buffer->size;
}
return 0;
}
void *deflator(void *arg)
{
struct file_buffer *write_buffer = cache_get_nohash(bwriter_buffer);
void *stream = NULL;
int res;
res = compressor_init(comp, &stream, block_size, 1);
if(res)
BAD_ERROR("deflator:: compressor_init failed\n");
while(1) {
struct file_buffer *file_buffer = queue_get(to_deflate);
if(sparse_files && all_zero(file_buffer)) {
file_buffer->c_byte = 0;
seq_queue_put(to_main, file_buffer);
} else {
write_buffer->c_byte = mangle2(stream,
write_buffer->data, file_buffer->data,
file_buffer->size, block_size,
file_buffer->noD, 1);
write_buffer->sequence = file_buffer->sequence;
write_buffer->file_size = file_buffer->file_size;
write_buffer->block = file_buffer->block;
write_buffer->size = SQUASHFS_COMPRESSED_SIZE_BLOCK
(write_buffer->c_byte);
write_buffer->fragment = FALSE;
write_buffer->error = FALSE;
cache_block_put(file_buffer);
seq_queue_put(to_main, write_buffer);
write_buffer = cache_get_nohash(bwriter_buffer);
}
}
}
void *frag_deflator(void *arg)
{
void *stream = NULL;
int res;
res = compressor_init(comp, &stream, block_size, 1);
if(res)
BAD_ERROR("frag_deflator:: compressor_init failed\n");
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
while(1) {
int c_byte, compressed_size;
struct file_buffer *file_buffer = queue_get(to_frag);
struct file_buffer *write_buffer =
cache_get(fwriter_buffer, file_buffer->block);
c_byte = mangle2(stream, write_buffer->data, file_buffer->data,
file_buffer->size, block_size, noF, 1);
compressed_size = SQUASHFS_COMPRESSED_SIZE_BLOCK(c_byte);
write_buffer->size = compressed_size;
pthread_mutex_lock(&fragment_mutex);
if(fragments_locked == FALSE) {
fragment_table[file_buffer->block].size = c_byte;
fragment_table[file_buffer->block].start_block = bytes;
write_buffer->block = bytes;
bytes += compressed_size;
fragments_outstanding --;
queue_put(to_writer, write_buffer);
log_fragment(file_buffer->block, fragment_table[file_buffer->block].start_block);
pthread_mutex_unlock(&fragment_mutex);
TRACE("Writing fragment %lld, uncompressed size %d, "
"compressed size %d\n", file_buffer->block,
file_buffer->size, compressed_size);
} else {
add_pending_fragment(write_buffer, c_byte,
file_buffer->block);
pthread_mutex_unlock(&fragment_mutex);
}
cache_block_put(file_buffer);
}
pthread_cleanup_pop(0);
}
void *frag_order_deflator(void *arg)
{
void *stream = NULL;
int res;
res = compressor_init(comp, &stream, block_size, 1);
if(res)
BAD_ERROR("frag_deflator:: compressor_init failed\n");
while(1) {
int c_byte;
struct file_buffer *file_buffer = queue_get(to_frag);
struct file_buffer *write_buffer =
cache_get(fwriter_buffer, file_buffer->block);
c_byte = mangle2(stream, write_buffer->data, file_buffer->data,
file_buffer->size, block_size, noF, 1);
write_buffer->block = file_buffer->block;
write_buffer->sequence = file_buffer->sequence;
write_buffer->size = c_byte;
write_buffer->fragment = FALSE;
seq_queue_put(to_order, write_buffer);
TRACE("Writing fragment %lld, uncompressed size %d, "
"compressed size %d\n", file_buffer->block,
file_buffer->size, SQUASHFS_COMPRESSED_SIZE_BLOCK(c_byte));
cache_block_put(file_buffer);
}
}
void *frag_orderer(void *arg)
{
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
while(1) {
struct file_buffer *write_buffer = seq_queue_get(to_order);
int block = write_buffer->block;
pthread_mutex_lock(&fragment_mutex);
fragment_table[block].size = write_buffer->size;
fragment_table[block].start_block = bytes;
write_buffer->block = bytes;
bytes += SQUASHFS_COMPRESSED_SIZE_BLOCK(write_buffer->size);
write_buffer->size = SQUASHFS_COMPRESSED_SIZE_BLOCK(write_buffer->size);
fragments_outstanding --;
log_fragment(block, write_buffer->block);
queue_put(to_writer, write_buffer);
pthread_cond_signal(&fragment_waiting);
pthread_mutex_unlock(&fragment_mutex);
}
pthread_cleanup_pop(0);
}
struct file_buffer *get_file_buffer()
{
struct file_buffer *file_buffer = seq_queue_get(to_main);
return file_buffer;
}
void write_file_empty(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *file_buffer, int *duplicate_file)
{
file_count ++;
*duplicate_file = FALSE;
cache_block_put(file_buffer);
create_inode(inode, NULL, dir_ent, SQUASHFS_FILE_TYPE, 0, 0, 0,
NULL, &empty_fragment, NULL, 0);
}
void write_file_frag(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *file_buffer, int *duplicate_file)
{
int size = file_buffer->file_size;
struct fragment *fragment;
unsigned short checksum = file_buffer->checksum;
char dont_put;
fragment = frag_duplicate(file_buffer, &dont_put);
*duplicate_file = !fragment;
if(!fragment) {
fragment = get_and_fill_fragment(file_buffer, dir_ent);
if(duplicate_checking)
add_non_dup(size, 0, NULL, 0, fragment, 0, checksum,
TRUE, TRUE);
}
if(dont_put)
free(file_buffer);
else
cache_block_put(file_buffer);
total_bytes += size;
file_count ++;
inc_progress_bar();
create_inode(inode, NULL, dir_ent, SQUASHFS_FILE_TYPE, size, 0,
0, NULL, fragment, NULL, 0);
if(!duplicate_checking)
free_fragment(fragment);
}
void log_file(struct dir_ent *dir_ent, long long start)
{
if(logging && start)
fprintf(log_fd, "%s, %lld\n", pathname(dir_ent), start);
}
int write_file_process(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *read_buffer, int *duplicate_file)
{
long long read_size, file_bytes, start;
struct fragment *fragment;
unsigned int *block_list = NULL;
int block = 0, status;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
*duplicate_file = FALSE;
if(reproducible)
ensure_fragments_flushed();
else
lock_fragments();
file_bytes = 0;
start = bytes;
while (1) {
read_size = read_buffer->file_size;
if(read_buffer->fragment) {
fragment_buffer = read_buffer;
if(block == 0)
start=0;
} else {
block_list = realloc(block_list, (block + 1) *
sizeof(unsigned int));
if(block_list == NULL)
MEM_ERROR();
block_list[block ++] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
cache_hash(read_buffer, read_buffer->block);
file_bytes += read_buffer->size;
queue_put(to_writer, read_buffer);
} else {
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(read_size != -1)
break;
read_buffer = get_file_buffer();
if(read_buffer->error)
goto read_err;
}
if(!reproducible)
unlock_fragments();
fragment = get_and_fill_fragment(fragment_buffer, dir_ent);
if(duplicate_checking)
add_non_dup(read_size, file_bytes, block_list, start, fragment,
0, fragment_buffer ? fragment_buffer->checksum : 0,
FALSE, TRUE);
cache_block_put(fragment_buffer);
file_count ++;
total_bytes += read_size;
create_inode(inode, NULL, dir_ent, SQUASHFS_FILE_TYPE, read_size, start,
block, block_list, fragment, NULL, sparse);
log_file(dir_ent, start);
if(duplicate_checking == FALSE) {
free(block_list);
free_fragment(fragment);
}
return 0;
read_err:
dec_progress_bar(block);
status = read_buffer->error;
bytes = start;
if(!block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
if(!reproducible)
unlock_fragments();
free(block_list);
cache_block_put(read_buffer);
return status;
}
int write_file_blocks_dup(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *read_buffer, int *duplicate_file)
{
int block, thresh;
long long read_size = read_buffer->file_size;
long long file_bytes, dup_start, start;
struct fragment *fragment;
struct file_info *dupl_ptr;
int blocks = (read_size + block_size - 1) >> block_log;
unsigned int *block_list, *block_listp;
struct file_buffer **buffer_list;
int status;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
block_list = malloc(blocks * sizeof(unsigned int));
if(block_list == NULL)
MEM_ERROR();
block_listp = block_list;
buffer_list = malloc(blocks * sizeof(struct file_buffer *));
if(buffer_list == NULL)
MEM_ERROR();
if(reproducible)
ensure_fragments_flushed();
else
lock_fragments();
file_bytes = 0;
start = dup_start = bytes;
thresh = blocks > bwriter_size ? blocks - bwriter_size : 0;
for(block = 0; block < blocks;) {
if(read_buffer->fragment) {
block_list[block] = 0;
buffer_list[block] = NULL;
fragment_buffer = read_buffer;
blocks = read_size >> block_log;
} else {
block_list[block] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
file_bytes += read_buffer->size;
cache_hash(read_buffer, read_buffer->block);
if(block < thresh) {
buffer_list[block] = NULL;
queue_put(to_writer, read_buffer);
} else
buffer_list[block] = read_buffer;
} else {
buffer_list[block] = NULL;
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(++block < blocks) {
read_buffer = get_file_buffer();
if(read_buffer->error)
goto read_err;
}
}
dupl_ptr = duplicate(read_size, file_bytes, &block_listp, &dup_start,
&fragment, fragment_buffer, blocks, 0, FALSE);
if(dupl_ptr) {
*duplicate_file = FALSE;
for(block = thresh; block < blocks; block ++)
if(buffer_list[block])
queue_put(to_writer, buffer_list[block]);
fragment = get_and_fill_fragment(fragment_buffer, dir_ent);
dupl_ptr->fragment = fragment;
} else {
*duplicate_file = TRUE;
for(block = thresh; block < blocks; block ++)
cache_block_put(buffer_list[block]);
bytes = start;
if(thresh && !block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because"
" %s\n", strerror(errno));
}
}
if(!reproducible)
unlock_fragments();
cache_block_put(fragment_buffer);
free(buffer_list);
file_count ++;
total_bytes += read_size;
/*
* sparse count is needed to ensure squashfs correctly reports a
* a smaller block count on stat calls to sparse files. This is
* to ensure intelligent applications like cp correctly handle the
* file as a sparse file. If the file in the original filesystem isn't
* stored as a sparse file then still store it sparsely in squashfs, but
* report it as non-sparse on stat calls to preserve semantics
*/
if(sparse && (dir_ent->inode->buf.st_blocks << 9) >= read_size)
sparse = 0;
create_inode(inode, NULL, dir_ent, SQUASHFS_FILE_TYPE, read_size,
dup_start, blocks, block_listp, fragment, NULL, sparse);
if(*duplicate_file == TRUE)
free(block_list);
else
log_file(dir_ent, dup_start);
return 0;
read_err:
dec_progress_bar(block);
status = read_buffer->error;
bytes = start;
if(thresh && !block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
if(!reproducible)
unlock_fragments();
for(blocks = thresh; blocks < block; blocks ++)
cache_block_put(buffer_list[blocks]);
free(buffer_list);
free(block_list);
cache_block_put(read_buffer);
return status;
}
int write_file_blocks(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *read_buffer, int *dup)
{
long long read_size = read_buffer->file_size;
long long file_bytes, start;
struct fragment *fragment;
unsigned int *block_list;
int block, status;
int blocks = (read_size + block_size - 1) >> block_log;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
if(pre_duplicate(read_size))
return write_file_blocks_dup(inode, dir_ent, read_buffer, dup);
*dup = FALSE;
block_list = malloc(blocks * sizeof(unsigned int));
if(block_list == NULL)
MEM_ERROR();
if(reproducible)
ensure_fragments_flushed();
else
lock_fragments();
file_bytes = 0;
start = bytes;
for(block = 0; block < blocks;) {
if(read_buffer->fragment) {
block_list[block] = 0;
fragment_buffer = read_buffer;
blocks = read_size >> block_log;
} else {
block_list[block] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
cache_hash(read_buffer, read_buffer->block);
file_bytes += read_buffer->size;
queue_put(to_writer, read_buffer);
} else {
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(++block < blocks) {
read_buffer = get_file_buffer();
if(read_buffer->error)
goto read_err;
}
}
if(!reproducible)
unlock_fragments();
fragment = get_and_fill_fragment(fragment_buffer, dir_ent);
if(duplicate_checking)
add_non_dup(read_size, file_bytes, block_list, start, fragment,
0, fragment_buffer ? fragment_buffer->checksum : 0,
FALSE, TRUE);
cache_block_put(fragment_buffer);
file_count ++;
total_bytes += read_size;
/*
* sparse count is needed to ensure squashfs correctly reports a
* a smaller block count on stat calls to sparse files. This is
* to ensure intelligent applications like cp correctly handle the
* file as a sparse file. If the file in the original filesystem isn't
* stored as a sparse file then still store it sparsely in squashfs, but
* report it as non-sparse on stat calls to preserve semantics
*/
if(sparse && (dir_ent->inode->buf.st_blocks << 9) >= read_size)
sparse = 0;
create_inode(inode, NULL, dir_ent, SQUASHFS_FILE_TYPE, read_size, start,
blocks, block_list, fragment, NULL, sparse);
log_file(dir_ent, start);
if(duplicate_checking == FALSE) {
free(block_list);
free_fragment(fragment);
}
return 0;
read_err:
dec_progress_bar(block);
status = read_buffer->error;
bytes = start;
if(!block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
if(!reproducible)
unlock_fragments();
free(block_list);
cache_block_put(read_buffer);
return status;
}
void write_file(squashfs_inode *inode, struct dir_ent *dir, int *dup)
{
int status;
struct file_buffer *read_buffer;
again:
read_buffer = get_file_buffer();
status = read_buffer->error;
if(status)
cache_block_put(read_buffer);
else if(read_buffer->file_size == -1)
status = write_file_process(inode, dir, read_buffer, dup);
else if(read_buffer->file_size == 0)
write_file_empty(inode, dir, read_buffer, dup);
else if(read_buffer->fragment && read_buffer->c_byte)
write_file_frag(inode, dir, read_buffer, dup);
else
status = write_file_blocks(inode, dir, read_buffer, dup);
if(status == 2) {
ERROR("File %s changed size while reading filesystem, "
"attempting to re-read\n", pathname(dir));
goto again;
} else if(status == 1) {
ERROR_START("Failed to read file %s", pathname(dir));
ERROR_EXIT(", creating empty file\n");
write_file_empty(inode, dir, NULL, dup);
}
}
#define BUFF_SIZE 512
char *name;
char *basename_r();
char *getbase(char *pathname)
{
static char *b_buffer = NULL;
static int b_size = BUFF_SIZE;
char *result;
if(b_buffer == NULL) {
b_buffer = malloc(b_size);
if(b_buffer == NULL)
MEM_ERROR();
}
while(1) {
if(*pathname != '/') {
result = getcwd(b_buffer, b_size);
if(result == NULL && errno != ERANGE)
BAD_ERROR("Getcwd failed in getbase\n");
/* enough room for pathname + "/" + '\0' terminator? */
if(result && strlen(pathname) + 2 <=
b_size - strlen(b_buffer)) {
strcat(strcat(b_buffer, "/"), pathname);
break;
}
} else if(strlen(pathname) < b_size) {
strcpy(b_buffer, pathname);
break;
}
/* Buffer not large enough, realloc and try again */
b_buffer = realloc(b_buffer, b_size += BUFF_SIZE);
if(b_buffer == NULL)
MEM_ERROR();
}
name = b_buffer;
if(((result = basename_r()) == NULL) || (strcmp(result, "..") == 0))
return NULL;
else
return result;
}
char *basename_r()
{
char *s;
char *p;
int n = 1;
for(;;) {
s = name;
if(*name == '\0')
return NULL;
if(*name != '/') {
while(*name != '\0' && *name != '/') name++;
n = name - s;
}
while(*name == '/') name++;
if(strncmp(s, ".", n) == 0)
continue;
if((*name == '\0') || (strncmp(s, "..", n) == 0) ||
((p = basename_r()) == NULL)) {
s[n] = '\0';
return s;
}
if(strcmp(p, "..") == 0)
continue;
return p;
}
}
struct inode_info *lookup_inode3(struct stat *buf, int pseudo, int id,
char *symlink, int bytes)
{
int ino_hash = INODE_HASH(buf->st_dev, buf->st_ino);
struct inode_info *inode;
/*
* Look-up inode in hash table, if it already exists we have a
* hard-link, so increment the nlink count and return it.
* Don't do the look-up for directories because we don't hard-link
* directories.
*/
if ((buf->st_mode & S_IFMT) != S_IFDIR) {
for(inode = inode_info[ino_hash]; inode; inode = inode->next) {
if(memcmp(buf, &inode->buf, sizeof(struct stat)) == 0) {
inode->nlink ++;
return inode;
}
}
}
inode = malloc(sizeof(struct inode_info) + bytes);
if(inode == NULL)
MEM_ERROR();
if(bytes)
memcpy(&inode->symlink, symlink, bytes);
memcpy(&inode->buf, buf, sizeof(struct stat));
inode->read = FALSE;
inode->root_entry = FALSE;
inode->pseudo_file = pseudo;
inode->pseudo_id = id;
inode->inode = SQUASHFS_INVALID_BLK;
inode->nlink = 1;
inode->inode_number = 0;
/*
* Copy filesystem wide defaults into inode, these filesystem
* wide defaults may be altered on an individual inode basis by
* user specified actions
*
*/
inode->no_fragments = no_fragments;
inode->always_use_fragments = always_use_fragments;
inode->noD = noD;
inode->noF = noF;
inode->next = inode_info[ino_hash];
inode_info[ino_hash] = inode;
return inode;
}
struct inode_info *lookup_inode2(struct stat *buf, int pseudo, int id)
{
return lookup_inode3(buf, pseudo, id, NULL, 0);
}
static inline struct inode_info *lookup_inode(struct stat *buf)
{
return lookup_inode2(buf, 0, 0);
}
static inline void alloc_inode_no(struct inode_info *inode, unsigned int use_this)
{
if (inode->inode_number == 0) {
inode->inode_number = use_this ? : inode_no ++;
if((inode->buf.st_mode & S_IFMT) == S_IFREG)
progress_bar_size((inode->buf.st_size + block_size - 1)
>> block_log);
}
}
static inline struct dir_ent *create_dir_entry(char *name, char *source_name,
char *nonstandard_pathname, struct dir_info *dir)
{
struct dir_ent *dir_ent = malloc(sizeof(struct dir_ent));
if(dir_ent == NULL)
MEM_ERROR();
dir_ent->name = name;
dir_ent->source_name = source_name;
dir_ent->nonstandard_pathname = nonstandard_pathname;
dir_ent->our_dir = dir;
dir_ent->inode = NULL;
dir_ent->next = NULL;
return dir_ent;
}
static inline void add_dir_entry(struct dir_ent *dir_ent, struct dir_info *sub_dir,
struct inode_info *inode_info)
{
struct dir_info *dir = dir_ent->our_dir;
if(sub_dir)
sub_dir->dir_ent = dir_ent;
dir_ent->inode = inode_info;
dir_ent->dir = sub_dir;
dir_ent->next = dir->list;
dir->list = dir_ent;
dir->count++;
}
static inline void add_dir_entry2(char *name, char *source_name,
char *nonstandard_pathname, struct dir_info *sub_dir,
struct inode_info *inode_info, struct dir_info *dir)
{
struct dir_ent *dir_ent = create_dir_entry(name, source_name,
nonstandard_pathname, dir);
add_dir_entry(dir_ent, sub_dir, inode_info);
}
static inline void free_dir_entry(struct dir_ent *dir_ent)
{
if(dir_ent->name)
free(dir_ent->name);
if(dir_ent->source_name)
free(dir_ent->source_name);
if(dir_ent->nonstandard_pathname)
free(dir_ent->nonstandard_pathname);
/* if this entry has been associated with an inode, then we need
* to update the inode nlink count. Orphaned inodes are harmless, and
* is easier to leave them than go to the bother of deleting them */
if(dir_ent->inode && !dir_ent->inode->root_entry)
dir_ent->inode->nlink --;
free(dir_ent);
}
static inline void add_excluded(struct dir_info *dir)
{
dir->excluded ++;
}
void dir_scan(squashfs_inode *inode, char *pathname,
struct dir_ent *(_readdir)(struct dir_info *), int progress)
{
struct stat buf;
struct dir_ent *dir_ent;
root_dir = dir_scan1(pathname, "", paths, _readdir, 1);
if(root_dir == NULL)
return;
/* Create root directory dir_ent and associated inode, and connect
* it to the root directory dir_info structure */
dir_ent = create_dir_entry("", NULL, pathname,
scan1_opendir("", "", 0));
if(pathname[0] == '\0') {
/*
* dummy top level directory, if multiple sources specified on
* command line
*/
memset(&buf, 0, sizeof(buf));
buf.st_mode = (root_mode_opt) ? root_mode | S_IFDIR : S_IRWXU | S_IRWXG | S_IRWXO | S_IFDIR;
buf.st_uid = getuid();
buf.st_gid = getgid();
buf.st_mtime = time(NULL);
buf.st_dev = 0;
buf.st_ino = 0;
dir_ent->inode = lookup_inode2(&buf, PSEUDO_FILE_OTHER, 0);
} else {
if(lstat(pathname, &buf) == -1)
/* source directory has disappeared? */
BAD_ERROR("Cannot stat source directory %s because %s\n",
pathname, strerror(errno));
if(root_mode_opt)
buf.st_mode = root_mode | S_IFDIR;
dir_ent->inode = lookup_inode(&buf);
}
dir_ent->dir = root_dir;
root_dir->dir_ent = dir_ent;
/*
* Process most actions and any pseudo files
*/
if(actions() || get_pseudo())
dir_scan2(root_dir, get_pseudo());
/*
* Process move actions
*/
if(move_actions()) {
dir_scan3(root_dir);
do_move_actions();
}
/*
* Process prune actions
*/
if(prune_actions())
dir_scan4(root_dir);
/*
* Process empty actions
*/
if(empty_actions())
dir_scan5(root_dir);
/*
* Sort directories and compute the inode numbers
*/
dir_scan6(root_dir);
alloc_inode_no(dir_ent->inode, root_inode_number);
eval_actions(root_dir, dir_ent);
if(sorted)
generate_file_priorities(root_dir, 0,
&root_dir->dir_ent->inode->buf);
if(appending) {
sigset_t sigmask;
restore_thread = init_restore_thread();
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGTERM);
sigaddset(&sigmask, SIGUSR1);
if(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) != 0)
BAD_ERROR("Failed to set signal mask\n");
write_destination(fd, SQUASHFS_START, 4, "\0\0\0\0");
}
queue_put(to_reader, root_dir);
set_progressbar_state(progress);
if(sorted)
sort_files_and_write(root_dir);
dir_scan7(inode, root_dir);
dir_ent->inode->inode = *inode;
dir_ent->inode->type = SQUASHFS_DIR_TYPE;
}
/*
* dir_scan1 routines...
* These scan the source directories into memory for processing.
* Exclude actions are processed here (in contrast to the other actions)
* because they affect what is scanned.
*/
struct dir_info *scan1_opendir(char *pathname, char *subpath, int depth)
{
struct dir_info *dir;
dir = malloc(sizeof(struct dir_info));
if(dir == NULL)
MEM_ERROR();
if(pathname[0] != '\0') {
dir->linuxdir = opendir(pathname);
if(dir->linuxdir == NULL) {
free(dir);
return NULL;
}
}
dir->pathname = strdup(pathname);
dir->subpath = strdup(subpath);
dir->count = 0;
dir->directory_count = 0;
dir->dir_is_ldir = TRUE;
dir->list = NULL;
dir->depth = depth;
dir->excluded = 0;
return dir;
}
struct dir_ent *scan1_encomp_readdir(struct dir_info *dir)
{
static int index = 0;
if(dir->count < old_root_entries) {
int i;
for(i = 0; i < old_root_entries; i++) {
if(old_root_entry[i].inode.type == SQUASHFS_DIR_TYPE)
dir->directory_count ++;
add_dir_entry2(old_root_entry[i].name, NULL, NULL, NULL,
&old_root_entry[i].inode, dir);
}
}
while(index < source) {
char *basename = NULL;
char *dir_name = getbase(source_path[index]);
int pass = 1, res;
if(dir_name == NULL) {
ERROR_START("Bad source directory %s",
source_path[index]);
ERROR_EXIT(" - skipping ...\n");
index ++;
continue;
}
dir_name = strdup(dir_name);
for(;;) {
struct dir_ent *dir_ent = dir->list;
for(; dir_ent && strcmp(dir_ent->name, dir_name) != 0;
dir_ent = dir_ent->next);
if(dir_ent == NULL)
break;
ERROR("Source directory entry %s already used! - trying"
" ", dir_name);
if(pass == 1)
basename = dir_name;
else
free(dir_name);
res = asprintf(&dir_name, "%s_%d", basename, pass++);
if(res == -1)
BAD_ERROR("asprintf failed in "
"scan1_encomp_readdir\n");
ERROR("%s\n", dir_name);
}
return create_dir_entry(dir_name, basename,
strdup(source_path[index ++]), dir);
}
return NULL;
}
struct dir_ent *scan1_single_readdir(struct dir_info *dir)
{
struct dirent *d_name;
int i;
if(dir->count < old_root_entries) {
for(i = 0; i < old_root_entries; i++) {
if(old_root_entry[i].inode.type == SQUASHFS_DIR_TYPE)
dir->directory_count ++;
add_dir_entry2(old_root_entry[i].name, NULL, NULL, NULL,
&old_root_entry[i].inode, dir);
}
}
if((d_name = readdir(dir->linuxdir)) != NULL) {
char *basename = NULL;
char *dir_name = strdup(d_name->d_name);
int pass = 1, res;
for(;;) {
struct dir_ent *dir_ent = dir->list;
for(; dir_ent && strcmp(dir_ent->name, dir_name) != 0;
dir_ent = dir_ent->next);
if(dir_ent == NULL)
break;
ERROR("Source directory entry %s already used! - trying"
" ", dir_name);
if (pass == 1)
basename = dir_name;
else
free(dir_name);
res = asprintf(&dir_name, "%s_%d", d_name->d_name, pass++);
if(res == -1)
BAD_ERROR("asprintf failed in "
"scan1_single_readdir\n");
ERROR("%s\n", dir_name);
}
return create_dir_entry(dir_name, basename, NULL, dir);
}
return NULL;
}
struct dir_ent *scan1_readdir(struct dir_info *dir)
{
struct dirent *d_name = readdir(dir->linuxdir);
return d_name ?
create_dir_entry(strdup(d_name->d_name), NULL, NULL, dir) :
NULL;
}
void scan1_freedir(struct dir_info *dir)
{
if(dir->pathname[0] != '\0')
closedir(dir->linuxdir);
}
struct dir_info *dir_scan1(char *filename, char *subpath,
struct pathnames *paths,
struct dir_ent *(_readdir)(struct dir_info *), int depth)
{
struct dir_info *dir = scan1_opendir(filename, subpath, depth);
struct dir_ent *dir_ent;
if(dir == NULL) {
ERROR_START("Could not open %s", filename);
ERROR_EXIT(", skipping...\n");
return NULL;
}
while((dir_ent = _readdir(dir))) {
struct dir_info *sub_dir;
struct stat buf;
struct pathnames *new = NULL;
char *filename = pathname(dir_ent);
char *subpath = NULL;
char *dir_name = dir_ent->name;
if(strcmp(dir_name, ".") == 0 || strcmp(dir_name, "..") == 0) {
free_dir_entry(dir_ent);
continue;
}
if(lstat(filename, &buf) == -1) {
ERROR_START("Cannot stat dir/file %s because %s",
filename, strerror(errno));
ERROR_EXIT(", ignoring\n");
free_dir_entry(dir_ent);
continue;
}
if((buf.st_mode & S_IFMT) != S_IFREG &&
(buf.st_mode & S_IFMT) != S_IFDIR &&
(buf.st_mode & S_IFMT) != S_IFLNK &&
(buf.st_mode & S_IFMT) != S_IFCHR &&
(buf.st_mode & S_IFMT) != S_IFBLK &&
(buf.st_mode & S_IFMT) != S_IFIFO &&
(buf.st_mode & S_IFMT) != S_IFSOCK) {
ERROR_START("File %s has unrecognised filetype %d",
filename, buf.st_mode & S_IFMT);
ERROR_EXIT(", ignoring\n");
free_dir_entry(dir_ent);
continue;
}
if((old_exclude && old_excluded(filename, &buf)) ||
(!old_exclude && excluded(dir_name, paths, &new))) {
add_excluded(dir);
free_dir_entry(dir_ent);
continue;
}
if(exclude_actions()) {
subpath = subpathname(dir_ent);
if(eval_exclude_actions(dir_name, filename, subpath,
&buf, depth, dir_ent)) {
add_excluded(dir);
free_dir_entry(dir_ent);
continue;
}
}
switch(buf.st_mode & S_IFMT) {
case S_IFDIR:
if(subpath == NULL)
subpath = subpathname(dir_ent);
sub_dir = dir_scan1(filename, subpath, new,
scan1_readdir, depth + 1);
if(sub_dir) {
dir->directory_count ++;
add_dir_entry(dir_ent, sub_dir,
lookup_inode(&buf));
} else
free_dir_entry(dir_ent);
break;
case S_IFLNK: {
int byte;
static char buff[65536]; /* overflow safe */
byte = readlink(filename, buff, 65536);
if(byte == -1) {
ERROR_START("Failed to read symlink %s",
filename);
ERROR_EXIT(", ignoring\n");
} else if(byte == 65536) {
ERROR_START("Symlink %s is greater than 65536 "
"bytes!", filename);
ERROR_EXIT(", ignoring\n");
} else {
/* readlink doesn't 0 terminate the returned
* path */
buff[byte] = '\0';
add_dir_entry(dir_ent, NULL, lookup_inode3(&buf,
0, 0, buff, byte + 1));
}
break;
}
default:
add_dir_entry(dir_ent, NULL, lookup_inode(&buf));
}
free(new);
}
scan1_freedir(dir);
return dir;
}
/*
* dir_scan2 routines...
* This processes most actions and any pseudo files
*/
struct dir_ent *scan2_readdir(struct dir_info *dir, struct dir_ent *dir_ent)
{
if (dir_ent == NULL)
dir_ent = dir->list;
else
dir_ent = dir_ent->next;
for(; dir_ent && dir_ent->inode->root_entry; dir_ent = dir_ent->next);
return dir_ent;
}
struct dir_ent *scan2_lookup(struct dir_info *dir, char *name)
{
struct dir_ent *dir_ent = dir->list;
for(; dir_ent && strcmp(dir_ent->name, name) != 0;
dir_ent = dir_ent->next);
return dir_ent;
}
void dir_scan2(struct dir_info *dir, struct pseudo *pseudo)
{
struct dir_ent *dir_ent = NULL;
struct pseudo_entry *pseudo_ent;
struct stat buf;
static int pseudo_ino = 1;
while((dir_ent = scan2_readdir(dir, dir_ent)) != NULL) {
struct inode_info *inode_info = dir_ent->inode;
struct stat *buf = &inode_info->buf;
char *name = dir_ent->name;
eval_actions(root_dir, dir_ent);
if((buf->st_mode & S_IFMT) == S_IFDIR)
dir_scan2(dir_ent->dir, pseudo_subdir(name, pseudo));
}
while((pseudo_ent = pseudo_readdir(pseudo)) != NULL) {
dir_ent = scan2_lookup(dir, pseudo_ent->name);
if(pseudo_ent->dev->type == 'm') {
struct stat *buf;
if(dir_ent == NULL) {
ERROR_START("Pseudo modify file \"%s\" does "
"not exist in source filesystem.",
pseudo_ent->pathname);
ERROR_EXIT(" Ignoring.\n");
continue;
}
if(dir_ent->inode->root_entry) {
ERROR_START("Pseudo modify file \"%s\" is a "
"pre-existing file in the filesystem "
"being appended to. It cannot be "\
"modified.", pseudo_ent->pathname);
ERROR_EXIT(" Ignoring.\n");
continue;
}
buf = &dir_ent->inode->buf;
buf->st_mode = (buf->st_mode & S_IFMT) |
pseudo_ent->dev->mode;
buf->st_uid = pseudo_ent->dev->uid;
buf->st_gid = pseudo_ent->dev->gid;
continue;
}
if(dir_ent) {
if(dir_ent->inode->root_entry) {
ERROR_START("Pseudo file \"%s\" is a "
"pre-existing file in the filesystem "
"being appended to.",
pseudo_ent->pathname);
ERROR_EXIT(" Ignoring.\n");
} else {
ERROR_START("Pseudo file \"%s\" exists in "
"source filesystem \"%s\".",
pseudo_ent->pathname,
pathname(dir_ent));
ERROR_EXIT("\nIgnoring, exclude it (-e/-ef) to "
"override.\n");
}
continue;
}
memset(&buf, 0, sizeof(buf));
buf.st_mode = pseudo_ent->dev->mode;
buf.st_uid = pseudo_ent->dev->uid;
buf.st_gid = pseudo_ent->dev->gid;
buf.st_rdev = makedev(pseudo_ent->dev->major,
pseudo_ent->dev->minor);
buf.st_mtime = time(NULL);
buf.st_ino = pseudo_ino ++;
if(pseudo_ent->dev->type == 'd') {
struct dir_ent *dir_ent =
create_dir_entry(pseudo_ent->name, NULL,
pseudo_ent->pathname, dir);
char *subpath = subpathname(dir_ent);
struct dir_info *sub_dir = scan1_opendir("", subpath,
dir->depth + 1);
if(sub_dir == NULL) {
ERROR_START("Could not create pseudo directory "
"\"%s\"", pseudo_ent->pathname);
ERROR_EXIT(", skipping...\n");
pseudo_ino --;
continue;
}
dir_scan2(sub_dir, pseudo_ent->pseudo);
dir->directory_count ++;
add_dir_entry(dir_ent, sub_dir,
lookup_inode2(&buf, PSEUDO_FILE_OTHER, 0));
} else if(pseudo_ent->dev->type == 'f') {
add_dir_entry2(pseudo_ent->name, NULL,
pseudo_ent->pathname, NULL,
lookup_inode2(&buf, PSEUDO_FILE_PROCESS,
pseudo_ent->dev->pseudo_id), dir);
} else if(pseudo_ent->dev->type == 's') {
add_dir_entry2(pseudo_ent->name, NULL,
pseudo_ent->pathname, NULL,
lookup_inode3(&buf, PSEUDO_FILE_OTHER, 0,
pseudo_ent->dev->symlink,
strlen(pseudo_ent->dev->symlink) + 1), dir);
} else {
add_dir_entry2(pseudo_ent->name, NULL,
pseudo_ent->pathname, NULL,
lookup_inode2(&buf, PSEUDO_FILE_OTHER, 0), dir);
}
}
}
/*
* dir_scan3 routines...
* This processes the move action
*/
void dir_scan3(struct dir_info *dir)
{
struct dir_ent *dir_ent = NULL;
while((dir_ent = scan2_readdir(dir, dir_ent)) != NULL) {
eval_move_actions(root_dir, dir_ent);
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
dir_scan3(dir_ent->dir);
}
}
/*
* dir_scan4 routines...
* This processes the prune action. This action is designed to do fine
* grained tuning of the in-core directory structure after the exclude,
* move and pseudo actions have been performed. This allows complex
* tests to be performed which are impossible at exclude time (i.e.
* tests which rely on the in-core directory structure)
*/
void free_dir(struct dir_info *dir)
{
struct dir_ent *dir_ent = dir->list;
while(dir_ent) {
struct dir_ent *tmp = dir_ent;
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
free_dir(dir_ent->dir);
dir_ent = dir_ent->next;
free_dir_entry(tmp);
}
free(dir->pathname);
free(dir->subpath);
free(dir);
}
void dir_scan4(struct dir_info *dir)
{
struct dir_ent *dir_ent = dir->list, *prev = NULL;
while(dir_ent) {
if(dir_ent->inode->root_entry) {
prev = dir_ent;
dir_ent = dir_ent->next;
continue;
}
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
dir_scan4(dir_ent->dir);
if(eval_prune_actions(root_dir, dir_ent)) {
struct dir_ent *tmp = dir_ent;
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR) {
free_dir(dir_ent->dir);
dir->directory_count --;
}
dir->count --;
/* remove dir_ent from list */
dir_ent = dir_ent->next;
if(prev)
prev->next = dir_ent;
else
dir->list = dir_ent;
/* free it */
free_dir_entry(tmp);
add_excluded(dir);
continue;
}
prev = dir_ent;
dir_ent = dir_ent->next;
}
}
/*
* dir_scan5 routines...
* This processes the empty action. This action has to be processed after
* all other actions because the previous exclude and move actions and the
* pseudo actions affect whether a directory is empty
*/
void dir_scan5(struct dir_info *dir)
{
struct dir_ent *dir_ent = dir->list, *prev = NULL;
while(dir_ent) {
if(dir_ent->inode->root_entry) {
prev = dir_ent;
dir_ent = dir_ent->next;
continue;
}
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR) {
dir_scan5(dir_ent->dir);
if(eval_empty_actions(root_dir, dir_ent)) {
struct dir_ent *tmp = dir_ent;
/*
* delete sub-directory, this is by definition
* empty
*/
free(dir_ent->dir->pathname);
free(dir_ent->dir->subpath);
free(dir_ent->dir);
/* remove dir_ent from list */
dir_ent = dir_ent->next;
if(prev)
prev->next = dir_ent;
else
dir->list = dir_ent;
/* free it */
free_dir_entry(tmp);
/* update counts */
dir->directory_count --;
dir->count --;
add_excluded(dir);
continue;
}
}
prev = dir_ent;
dir_ent = dir_ent->next;
}
}
/*
* dir_scan6 routines...
* This sorts every directory and computes the inode numbers
*/
/*
* Bottom up linked list merge sort.
*
* Qsort and other O(n log n) algorithms work well with arrays but not
* linked lists. Merge sort another O(n log n) sort algorithm on the other hand
* is not ideal for arrays (as it needs an additonal n storage locations
* as sorting is not done in place), but it is ideal for linked lists because
* it doesn't require any extra storage,
*/
void sort_directory(struct dir_info *dir)
{
struct dir_ent *cur, *l1, *l2, *next;
int len1, len2, stride = 1;
if(dir->list == NULL || dir->count < 2)
return;
/*
* We can consider our linked-list to be made up of stride length
* sublists. Eacn iteration around this loop merges adjacent
* stride length sublists into larger 2*stride sublists. We stop
* when stride becomes equal to the entire list.
*
* Initially stride = 1 (by definition a sublist of 1 is sorted), and
* these 1 element sublists are merged into 2 element sublists, which
* are then merged into 4 element sublists and so on.
*/
do {
l2 = dir->list; /* head of current linked list */
cur = NULL; /* empty output list */
/*
* Iterate through the linked list, merging adjacent sublists.
* On each interation l2 points to the next sublist pair to be
* merged (if there's only one sublist left this is simply added
* to the output list)
*/
while(l2) {
l1 = l2;
for(len1 = 0; l2 && len1 < stride; len1 ++, l2 = l2->next);
len2 = stride;
/*
* l1 points to first sublist.
* l2 points to second sublist.
* Merge them onto the output list
*/
while(len1 && l2 && len2) {
if(strcmp(l1->name, l2->name) <= 0) {
next = l1;
l1 = l1->next;
len1 --;
} else {
next = l2;
l2 = l2->next;
len2 --;
}
if(cur) {
cur->next = next;
cur = next;
} else
dir->list = cur = next;
}
/*
* One sublist is now empty, copy the other one onto the
* output list
*/
for(; len1; len1 --, l1 = l1->next) {
if(cur) {
cur->next = l1;
cur = l1;
} else
dir->list = cur = l1;
}
for(; l2 && len2; len2 --, l2 = l2->next) {
if(cur) {
cur->next = l2;
cur = l2;
} else
dir->list = cur = l2;
}
}
cur->next = NULL;
stride = stride << 1;
} while(stride < dir->count);
}
void dir_scan6(struct dir_info *dir)
{
struct dir_ent *dir_ent;
unsigned int byte_count = 0;
sort_directory(dir);
for(dir_ent = dir->list; dir_ent; dir_ent = dir_ent->next) {
byte_count += strlen(dir_ent->name) +
sizeof(struct squashfs_dir_entry);
if(dir_ent->inode->root_entry)
continue;
alloc_inode_no(dir_ent->inode, 0);
if((dir_ent->inode->buf.st_mode & S_IFMT) == S_IFDIR)
dir_scan6(dir_ent->dir);
}
if((dir->count < 257 && byte_count < SQUASHFS_METADATA_SIZE))
dir->dir_is_ldir = FALSE;
}
/*
* dir_scan6 routines...
* This generates the filesystem metadata and writes it out to the destination
*/
void scan7_init_dir(struct directory *dir)
{
dir->buff = malloc(SQUASHFS_METADATA_SIZE);
if(dir->buff == NULL)
MEM_ERROR();
dir->size = SQUASHFS_METADATA_SIZE;
dir->p = dir->index_count_p = dir->buff;
dir->entry_count = 256;
dir->entry_count_p = NULL;
dir->index = NULL;
dir->i_count = dir->i_size = 0;
}
struct dir_ent *scan7_readdir(struct directory *dir, struct dir_info *dir_info,
struct dir_ent *dir_ent)
{
if (dir_ent == NULL)
dir_ent = dir_info->list;
else
dir_ent = dir_ent->next;
for(; dir_ent && dir_ent->inode->root_entry; dir_ent = dir_ent->next)
add_dir(dir_ent->inode->inode, dir_ent->inode->inode_number,
dir_ent->name, dir_ent->inode->type, dir);
return dir_ent;
}
void scan7_freedir(struct directory *dir)
{
if(dir->index)
free(dir->index);
free(dir->buff);
}
void dir_scan7(squashfs_inode *inode, struct dir_info *dir_info)
{
int squashfs_type;
int duplicate_file;
struct directory dir;
struct dir_ent *dir_ent = NULL;
scan7_init_dir(&dir);
while((dir_ent = scan7_readdir(&dir, dir_info, dir_ent)) != NULL) {
struct stat *buf = &dir_ent->inode->buf;
update_info(dir_ent);
if(dir_ent->inode->inode == SQUASHFS_INVALID_BLK) {
switch(buf->st_mode & S_IFMT) {
case S_IFREG:
squashfs_type = SQUASHFS_FILE_TYPE;
write_file(inode, dir_ent,
&duplicate_file);
INFO("file %s, uncompressed size %lld "
"bytes %s\n",
subpathname(dir_ent),
(long long) buf->st_size,
duplicate_file ? "DUPLICATE" :
"");
break;
case S_IFDIR:
squashfs_type = SQUASHFS_DIR_TYPE;
dir_scan7(inode, dir_ent->dir);
break;
case S_IFLNK:
squashfs_type = SQUASHFS_SYMLINK_TYPE;
create_inode(inode, NULL, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("symbolic link %s inode 0x%llx\n",
subpathname(dir_ent), *inode);
sym_count ++;
break;
case S_IFCHR:
squashfs_type = SQUASHFS_CHRDEV_TYPE;
create_inode(inode, NULL, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("character device %s inode 0x%llx"
"\n", subpathname(dir_ent),
*inode);
dev_count ++;
break;
case S_IFBLK:
squashfs_type = SQUASHFS_BLKDEV_TYPE;
create_inode(inode, NULL, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("block device %s inode 0x%llx\n",
subpathname(dir_ent), *inode);
dev_count ++;
break;
case S_IFIFO:
squashfs_type = SQUASHFS_FIFO_TYPE;
create_inode(inode, NULL, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("fifo %s inode 0x%llx\n",
subpathname(dir_ent), *inode);
fifo_count ++;
break;
case S_IFSOCK:
squashfs_type = SQUASHFS_SOCKET_TYPE;
create_inode(inode, NULL, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("unix domain socket %s inode "
"0x%llx\n",
subpathname(dir_ent), *inode);
sock_count ++;
break;
default:
BAD_ERROR("%s unrecognised file type, "
"mode is %x\n",
subpathname(dir_ent),
buf->st_mode);
}
dir_ent->inode->inode = *inode;
dir_ent->inode->type = squashfs_type;
} else {
*inode = dir_ent->inode->inode;
squashfs_type = dir_ent->inode->type;
switch(squashfs_type) {
case SQUASHFS_FILE_TYPE:
if(!sorted)
INFO("file %s, uncompressed "
"size %lld bytes LINK"
"\n",
subpathname(dir_ent),
(long long)
buf->st_size);
break;
case SQUASHFS_SYMLINK_TYPE:
INFO("symbolic link %s inode 0x%llx "
"LINK\n", subpathname(dir_ent),
*inode);
break;
case SQUASHFS_CHRDEV_TYPE:
INFO("character device %s inode 0x%llx "
"LINK\n", subpathname(dir_ent),
*inode);
break;
case SQUASHFS_BLKDEV_TYPE:
INFO("block device %s inode 0x%llx "
"LINK\n", subpathname(dir_ent),
*inode);
break;
case SQUASHFS_FIFO_TYPE:
INFO("fifo %s inode 0x%llx LINK\n",
subpathname(dir_ent), *inode);
break;
case SQUASHFS_SOCKET_TYPE:
INFO("unix domain socket %s inode "
"0x%llx LINK\n",
subpathname(dir_ent), *inode);
break;
}
}
add_dir(*inode, get_inode_no(dir_ent->inode), dir_ent->name,
squashfs_type, &dir);
}
write_dir(inode, dir_info, &dir);
INFO("directory %s inode 0x%llx\n", subpathname(dir_info->dir_ent),
*inode);
scan7_freedir(&dir);
}
unsigned int slog(unsigned int block)
{
int i;
for(i = 12; i <= 20; i++)
if(block == (1 << i))
return i;
return 0;
}
int old_excluded(char *filename, struct stat *buf)
{
int i;
for(i = 0; i < exclude; i++)
if((exclude_paths[i].st_dev == buf->st_dev) &&
(exclude_paths[i].st_ino == buf->st_ino))
return TRUE;
return FALSE;
}
#define ADD_ENTRY(buf) \
if(exclude % EXCLUDE_SIZE == 0) { \
exclude_paths = realloc(exclude_paths, (exclude + EXCLUDE_SIZE) \
* sizeof(struct exclude_info)); \
if(exclude_paths == NULL) \
MEM_ERROR(); \
} \
exclude_paths[exclude].st_dev = buf.st_dev; \
exclude_paths[exclude++].st_ino = buf.st_ino;
int old_add_exclude(char *path)
{
int i;
char *filename;
struct stat buf;
if(path[0] == '/' || strncmp(path, "./", 2) == 0 ||
strncmp(path, "../", 3) == 0) {
if(lstat(path, &buf) == -1) {
ERROR_START("Cannot stat exclude dir/file %s because "
"%s", path, strerror(errno));
ERROR_EXIT(", ignoring\n");
return TRUE;
}
ADD_ENTRY(buf);
return TRUE;
}
for(i = 0; i < source; i++) {
int res = asprintf(&filename, "%s/%s", source_path[i], path);
if(res == -1)
BAD_ERROR("asprintf failed in old_add_exclude\n");
if(lstat(filename, &buf) == -1) {
if(!(errno == ENOENT || errno == ENOTDIR)) {
ERROR_START("Cannot stat exclude dir/file %s "
"because %s", filename, strerror(errno));
ERROR_EXIT(", ignoring\n");
}
free(filename);
continue;
}
free(filename);
ADD_ENTRY(buf);
}
return TRUE;
}
void add_old_root_entry(char *name, squashfs_inode inode, int inode_number,
int type)
{
old_root_entry = realloc(old_root_entry,
sizeof(struct old_root_entry_info) * (old_root_entries + 1));
if(old_root_entry == NULL)
MEM_ERROR();
old_root_entry[old_root_entries].name = strdup(name);
old_root_entry[old_root_entries].inode.inode = inode;
old_root_entry[old_root_entries].inode.inode_number = inode_number;
old_root_entry[old_root_entries].inode.type = type;
old_root_entry[old_root_entries++].inode.root_entry = TRUE;
}
void initialise_threads(int readq, int fragq, int bwriteq, int fwriteq,
int freelst, char *destination_file)
{
int i;
sigset_t sigmask, old_mask;
int total_mem = readq;
int reader_size;
int fragment_size;
int fwriter_size;
/*
* bwriter_size is global because it is needed in
* write_file_blocks_dup()
*/
/*
* Never allow the total size of the queues to be larger than
* physical memory
*
* When adding together the possibly user supplied values, make
* sure they've not been deliberately contrived to overflow an int
*/
if(add_overflow(total_mem, fragq))
BAD_ERROR("Queue sizes rediculously too large\n");
total_mem += fragq;
if(add_overflow(total_mem, bwriteq))
BAD_ERROR("Queue sizes rediculously too large\n");
total_mem += bwriteq;
if(add_overflow(total_mem, fwriteq))
BAD_ERROR("Queue sizes rediculously too large\n");
total_mem += fwriteq;
check_usable_phys_mem(total_mem);
/*
* convert from queue size in Mbytes to queue size in
* blocks.
*
* This isn't going to overflow an int unless there exists
* systems with more than 8 Petabytes of RAM!
*/
reader_size = readq << (20 - block_log);
fragment_size = fragq << (20 - block_log);
bwriter_size = bwriteq << (20 - block_log);
fwriter_size = fwriteq << (20 - block_log);
/*
* setup signal handlers for the main thread, these cleanup
* deleting the destination file, if appending the
* handlers for SIGTERM and SIGINT will be replaced with handlers
* allowing the user to press ^C twice to restore the existing
* filesystem.
*
* SIGUSR1 is an internal signal, which is used by the sub-threads
* to tell the main thread to terminate, deleting the destination file,
* or if necessary restoring the filesystem on appending
*/
signal(SIGTERM, sighandler);
signal(SIGINT, sighandler);
signal(SIGUSR1, sighandler);
/* block SIGQUIT and SIGHUP, these are handled by the info thread */
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGQUIT);
sigaddset(&sigmask, SIGHUP);
if(pthread_sigmask(SIG_BLOCK, &sigmask, NULL) != 0)
BAD_ERROR("Failed to set signal mask in intialise_threads\n");
/*
* temporarily block these signals, so the created sub-threads
* will ignore them, ensuring the main thread handles them
*/
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGTERM);
sigaddset(&sigmask, SIGUSR1);
if(pthread_sigmask(SIG_BLOCK, &sigmask, &old_mask) != 0)
BAD_ERROR("Failed to set signal mask in intialise_threads\n");
if(processors == -1) {
#ifndef linux
int mib[2];
size_t len = sizeof(processors);
mib[0] = CTL_HW;
#ifdef HW_AVAILCPU
mib[1] = HW_AVAILCPU;
#else
mib[1] = HW_NCPU;
#endif
if(sysctl(mib, 2, &processors, &len, NULL, 0) == -1) {
ERROR_START("Failed to get number of available "
"processors.");
ERROR_EXIT(" Defaulting to 1\n");
processors = 1;
}
#else
processors = sysconf(_SC_NPROCESSORS_ONLN);
#endif
}
if(multiply_overflow(processors, 3) ||
multiply_overflow(processors * 3, sizeof(pthread_t)))
BAD_ERROR("Processors too large\n");
deflator_thread = malloc(processors * 3 * sizeof(pthread_t));
if(deflator_thread == NULL)
MEM_ERROR();
frag_deflator_thread = &deflator_thread[processors];
frag_thread = &frag_deflator_thread[processors];
to_reader = queue_init(1);
to_deflate = queue_init(reader_size);
to_process_frag = queue_init(reader_size);
to_writer = queue_init(bwriter_size + fwriter_size);
from_writer = queue_init(1);
to_frag = queue_init(fragment_size);
to_main = seq_queue_init();
if(reproducible)
to_order = seq_queue_init();
else
locked_fragment = queue_init(fragment_size);
reader_buffer = cache_init(block_size, reader_size, 0, 0);
bwriter_buffer = cache_init(block_size, bwriter_size, 1, freelst);
fwriter_buffer = cache_init(block_size, fwriter_size, 1, freelst);
fragment_buffer = cache_init(block_size, fragment_size, 1, 0);
reserve_cache = cache_init(block_size, processors + 1, 1, 0);
pthread_create(&reader_thread, NULL, reader, NULL);
pthread_create(&writer_thread, NULL, writer, NULL);
init_progress_bar();
init_info();
for(i = 0; i < processors; i++) {
if(pthread_create(&deflator_thread[i], NULL, deflator, NULL))
BAD_ERROR("Failed to create thread\n");
if(pthread_create(&frag_deflator_thread[i], NULL, reproducible ?
frag_order_deflator : frag_deflator, NULL) != 0)
BAD_ERROR("Failed to create thread\n");
if(pthread_create(&frag_thread[i], NULL, frag_thrd,
(void *) destination_file) != 0)
BAD_ERROR("Failed to create thread\n");
}
main_thread = pthread_self();
if(reproducible)
pthread_create(&order_thread, NULL, frag_orderer, NULL);
if(!quiet)
printf("Parallel mksquashfs: Using %d processor%s\n", processors,
processors == 1 ? "" : "s");
/* Restore the signal mask for the main thread */
if(pthread_sigmask(SIG_SETMASK, &old_mask, NULL) != 0)
BAD_ERROR("Failed to set signal mask in intialise_threads\n");
}
long long write_inode_lookup_table()
{
int i, inode_number, lookup_bytes = SQUASHFS_LOOKUP_BYTES(inode_count);
void *it;
if(inode_count == sinode_count)
goto skip_inode_hash_table;
it = realloc(inode_lookup_table, lookup_bytes);
if(it == NULL)
MEM_ERROR();
inode_lookup_table = it;
for(i = 0; i < INODE_HASH_SIZE; i ++) {
struct inode_info *inode;
for(inode = inode_info[i]; inode; inode = inode->next) {
inode_number = get_inode_no(inode);
/* The empty action will produce orphaned inode
* entries in the inode_info[] table. These
* entries because they are orphaned will not be
* allocated an inode number in dir_scan5(), so
* skip any entries with the default dummy inode
* number of 0 */
if(inode_number == 0)
continue;
SQUASHFS_SWAP_LONG_LONGS(&inode->inode,
&inode_lookup_table[inode_number - 1], 1);
}
}
skip_inode_hash_table:
return generic_write_table(lookup_bytes, inode_lookup_table, 0, NULL,
noI);
}
char *get_component(char *target, char **targname)
{
char *start;
while(*target == '/')
target ++;
start = target;
while(*target != '/' && *target != '\0')
target ++;
*targname = strndup(start, target - start);
while(*target == '/')
target ++;
return target;
}
void free_path(struct pathname *paths)
{
int i;
for(i = 0; i < paths->names; i++) {
if(paths->name[i].paths)
free_path(paths->name[i].paths);
free(paths->name[i].name);
if(paths->name[i].preg) {
regfree(paths->name[i].preg);
free(paths->name[i].preg);
}
}
free(paths);
}
struct pathname *add_path(struct pathname *paths, char *target, char *alltarget)
{
char *targname;
int i, error;
target = get_component(target, &targname);
if(paths == NULL) {
paths = malloc(sizeof(struct pathname));
if(paths == NULL)
MEM_ERROR();
paths->names = 0;
paths->name = NULL;
}
for(i = 0; i < paths->names; i++)
if(strcmp(paths->name[i].name, targname) == 0)
break;
if(i == paths->names) {
/* allocate new name entry */
paths->names ++;
paths->name = realloc(paths->name, (i + 1) *
sizeof(struct path_entry));
if(paths->name == NULL)
MEM_ERROR();
paths->name[i].name = targname;
paths->name[i].paths = NULL;
if(use_regex) {
paths->name[i].preg = malloc(sizeof(regex_t));
if(paths->name[i].preg == NULL)
MEM_ERROR();
error = regcomp(paths->name[i].preg, targname,
REG_EXTENDED|REG_NOSUB);
if(error) {
char str[1024]; /* overflow safe */
regerror(error, paths->name[i].preg, str, 1024);
BAD_ERROR("invalid regex %s in export %s, "
"because %s\n", targname, alltarget,
str);
}
} else
paths->name[i].preg = NULL;
if(target[0] == '\0')
/* at leaf pathname component */
paths->name[i].paths = NULL;
else
/* recurse adding child components */
paths->name[i].paths = add_path(NULL, target,
alltarget);
} else {
/* existing matching entry */
free(targname);
if(paths->name[i].paths == NULL) {
/* No sub-directory which means this is the leaf
* component of a pre-existing exclude which subsumes
* the exclude currently being added, in which case stop
* adding components */
} else if(target[0] == '\0') {
/* at leaf pathname component and child components exist
* from more specific excludes, delete as they're
* subsumed by this exclude */
free_path(paths->name[i].paths);
paths->name[i].paths = NULL;
} else
/* recurse adding child components */
add_path(paths->name[i].paths, target, alltarget);
}
return paths;
}
void add_exclude(char *target)
{
if(target[0] == '/' || strncmp(target, "./", 2) == 0 ||
strncmp(target, "../", 3) == 0)
BAD_ERROR("/, ./ and ../ prefixed excludes not supported with "
"-wildcards or -regex options\n");
else if(strncmp(target, "... ", 4) == 0)
stickypath = add_path(stickypath, target + 4, target + 4);
else
path = add_path(path, target, target);
}
void display_path(int depth, struct pathname *paths)
{
int i, n;
if(paths == NULL)
return;
for(i = 0; i < paths->names; i++) {
for(n = 0; n < depth; n++)
printf("\t");
printf("%d: %s\n", depth, paths->name[i].name);
display_path(depth + 1, paths->name[i].paths);
}
}
void display_path2(struct pathname *paths, char *string)
{
int i;
char *path;
if(paths == NULL) {
printf("%s\n", string);
return;
}
for(i = 0; i < paths->names; i++) {
int res = asprintf(&path, "%s/%s", string, paths->name[i].name);
if(res == -1)
BAD_ERROR("asprintf failed in display_path2\n");
display_path2(paths->name[i].paths, path);
free(path);
}
}
struct pathnames *add_subdir(struct pathnames *paths, struct pathname *path)
{
int count = paths == NULL ? 0 : paths->count;
if(count % PATHS_ALLOC_SIZE == 0) {
paths = realloc(paths, sizeof(struct pathnames) +
(count + PATHS_ALLOC_SIZE) * sizeof(struct pathname *));
if(paths == NULL)
MEM_ERROR();
}
paths->path[count] = path;
paths->count = count + 1;
return paths;
}
int excluded_match(char *name, struct pathname *path, struct pathnames **new)
{
int i;
for(i = 0; i < path->names; i++) {
int match = use_regex ?
regexec(path->name[i].preg, name, (size_t) 0,
NULL, 0) == 0 :
fnmatch(path->name[i].name, name,
FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) == 0;
if(match) {
if(path->name[i].paths == NULL || new == NULL)
/* match on a leaf component, any subdirectories
* in the filesystem should be excluded */
return TRUE;
else
/* match on a non-leaf component, add any
* subdirectories to the new set of
* subdirectories to scan for this name */
*new = add_subdir(*new, path->name[i].paths);
}
}
return FALSE;
}
int excluded(char *name, struct pathnames *paths, struct pathnames **new)
{
int n;
if(stickypath && excluded_match(name, stickypath, NULL))
return TRUE;
for(n = 0; paths && n < paths->count; n++) {
int res = excluded_match(name, paths->path[n], new);
if(res) {
free(*new);
*new = NULL;
return TRUE;
}
}
/*
* Either:
* - no matching names found, return empty new search set, or
* - one or more matches with sub-directories found (no leaf matches),
* in which case return new search set.
*
* In either case return FALSE as we don't want to exclude this entry
*/
return FALSE;
}
void process_exclude_file(char *argv)
{
FILE *fd;
char buffer[MAX_LINE + 1]; /* overflow safe */
char *filename;
fd = fopen(argv, "r");
if(fd == NULL)
BAD_ERROR("Failed to open exclude file \"%s\" because %s\n",
argv, strerror(errno));
while(fgets(filename = buffer, MAX_LINE + 1, fd) != NULL) {
int len = strlen(filename);
if(len == MAX_LINE && filename[len - 1] != '\n')
/* line too large */
BAD_ERROR("Line too long when reading "
"exclude file \"%s\", larger than %d "
"bytes\n", argv, MAX_LINE);
/*
* Remove '\n' terminator if it exists (the last line
* in the file may not be '\n' terminated)
*/
if(len && filename[len - 1] == '\n')
filename[len - 1] = '\0';
/* Skip any leading whitespace */
while(isspace(*filename))
filename ++;
/* if comment line, skip */
if(*filename == '#')
continue;
/*
* check for initial backslash, to accommodate
* filenames with leading space or leading # character
*/
if(*filename == '\\')
filename ++;
/* if line is now empty after skipping characters, skip it */
if(*filename == '\0')
continue;
if(old_exclude)
old_add_exclude(filename);
else
add_exclude(filename);
}
if(ferror(fd))
BAD_ERROR("Reading exclude file \"%s\" failed because %s\n",
argv, strerror(errno));
fclose(fd);
}
#define RECOVER_ID "Squashfs recovery file v1.0\n"
#define RECOVER_ID_SIZE 28
void write_recovery_data(struct squashfs_super_block *sBlk)
{
int res, recoverfd, bytes = sBlk->bytes_used - sBlk->inode_table_start;
pid_t pid = getpid();
char *metadata;
char header[] = RECOVER_ID;
if(recover == FALSE) {
printf("No recovery data option specified.\n");
printf("Skipping saving recovery file.\n\n");
return;
}
metadata = malloc(bytes);
if(metadata == NULL)
MEM_ERROR();
res = read_fs_bytes(fd, sBlk->inode_table_start, bytes, metadata);
if(res == 0) {
ERROR("Failed to read append filesystem metadata\n");
BAD_ERROR("Filesystem corrupted?\n");
}
res = asprintf(&recovery_file, "squashfs_recovery_%s_%d",
getbase(destination_file), pid);
if(res == -1)
MEM_ERROR();
recoverfd = open(recovery_file, O_CREAT | O_TRUNC | O_RDWR, S_IRWXU);
if(recoverfd == -1)
BAD_ERROR("Failed to create recovery file, because %s. "
"Aborting\n", strerror(errno));
if(write_bytes(recoverfd, header, RECOVER_ID_SIZE) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
if(write_bytes(recoverfd, sBlk, sizeof(struct squashfs_super_block)) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
if(write_bytes(recoverfd, metadata, bytes) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
close(recoverfd);
free(metadata);
printf("Recovery file \"%s\" written\n", recovery_file);
printf("If Mksquashfs aborts abnormally (i.e. power failure), run\n");
printf("mksquashfs dummy %s -recover %s\n", destination_file,
recovery_file);
printf("to restore filesystem\n\n");
}
void read_recovery_data(char *recovery_file, char *destination_file)
{
int fd, recoverfd, bytes;
struct squashfs_super_block orig_sBlk, sBlk;
char *metadata;
int res;
struct stat buf;
char header[] = RECOVER_ID;
char header2[RECOVER_ID_SIZE];
recoverfd = open(recovery_file, O_RDONLY);
if(recoverfd == -1)
BAD_ERROR("Failed to open recovery file because %s\n",
strerror(errno));
if(stat(destination_file, &buf) == -1)
BAD_ERROR("Failed to stat destination file, because %s\n",
strerror(errno));
fd = open(destination_file, O_RDWR);
if(fd == -1)
BAD_ERROR("Failed to open destination file because %s\n",
strerror(errno));
res = read_bytes(recoverfd, header2, RECOVER_ID_SIZE);
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < RECOVER_ID_SIZE)
BAD_ERROR("Recovery file appears to be truncated\n");
if(strncmp(header, header2, RECOVER_ID_SIZE) !=0 )
BAD_ERROR("Not a recovery file\n");
res = read_bytes(recoverfd, &sBlk, sizeof(struct squashfs_super_block));
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < sizeof(struct squashfs_super_block))
BAD_ERROR("Recovery file appears to be truncated\n");
res = read_fs_bytes(fd, 0, sizeof(struct squashfs_super_block), &orig_sBlk);
if(res == 0) {
ERROR("Failed to read superblock from output filesystem\n");
BAD_ERROR("Output filesystem is empty!\n");
}
if(memcmp(((char *) &sBlk) + 4, ((char *) &orig_sBlk) + 4,
sizeof(struct squashfs_super_block) - 4) != 0)
BAD_ERROR("Recovery file and destination file do not seem to "
"match\n");
bytes = sBlk.bytes_used - sBlk.inode_table_start;
metadata = malloc(bytes);
if(metadata == NULL)
MEM_ERROR();
res = read_bytes(recoverfd, metadata, bytes);
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < bytes)
BAD_ERROR("Recovery file appears to be truncated\n");
write_destination(fd, 0, sizeof(struct squashfs_super_block), &sBlk);
write_destination(fd, sBlk.inode_table_start, bytes, metadata);
close(recoverfd);
close(fd);
printf("Successfully wrote recovery file \"%s\". Exiting\n",
recovery_file);
exit(0);
}
void write_filesystem_tables(struct squashfs_super_block *sBlk, int nopad)
{
int i;
sBlk->fragments = fragments;
sBlk->no_ids = id_count;
sBlk->inode_table_start = write_inodes();
sBlk->directory_table_start = write_directories();
sBlk->fragment_table_start = write_fragment_table();
sBlk->lookup_table_start = exportable ? write_inode_lookup_table() :
SQUASHFS_INVALID_BLK;
sBlk->id_table_start = write_id_table();
sBlk->xattr_id_table_start = write_xattrs();
TRACE("sBlk->inode_table_start 0x%llx\n", sBlk->inode_table_start);
TRACE("sBlk->directory_table_start 0x%llx\n",
sBlk->directory_table_start);
TRACE("sBlk->fragment_table_start 0x%llx\n", sBlk->fragment_table_start);
if(exportable)
TRACE("sBlk->lookup_table_start 0x%llx\n",
sBlk->lookup_table_start);
sBlk->bytes_used = bytes;
sBlk->compression = comp->id;
SQUASHFS_INSWAP_SUPER_BLOCK(sBlk);
write_destination(fd, SQUASHFS_START, sizeof(*sBlk), sBlk);
if(!nopad && (i = bytes & (4096 - 1))) {
char temp[4096] = {0};
write_destination(fd, bytes, 4096 - i, temp);
}
close(fd);
if(recovery_file)
unlink(recovery_file);
total_bytes += total_inode_bytes + total_directory_bytes +
sizeof(struct squashfs_super_block) + total_xattr_bytes;
if(quiet)
return;
printf("\n%sSquashfs %d.%d filesystem, %s compressed, data block size"
" %d\n", exportable ? "Exportable " : "", SQUASHFS_MAJOR,
SQUASHFS_MINOR, comp->name, block_size);
printf("\t%s data, %s metadata, %s fragments,\n\t%s xattrs, %s ids\n",
noD ? "uncompressed" : "compressed", noI ? "uncompressed" :
"compressed", no_fragments ? "no" : noF ? "uncompressed" :
"compressed", no_xattrs ? "no" : noX ? "uncompressed" :
"compressed", noI || noId ? "uncompressed" : "compressed");
printf("\tduplicates are %sremoved\n", duplicate_checking ? "" :
"not ");
printf("Filesystem size %.2f Kbytes (%.2f Mbytes)\n", bytes / 1024.0,
bytes / (1024.0 * 1024.0));
printf("\t%.2f%% of uncompressed filesystem size (%.2f Kbytes)\n",
((float) bytes / total_bytes) * 100.0, total_bytes / 1024.0);
printf("Inode table size %d bytes (%.2f Kbytes)\n",
inode_bytes, inode_bytes / 1024.0);
printf("\t%.2f%% of uncompressed inode table size (%d bytes)\n",
((float) inode_bytes / total_inode_bytes) * 100.0,
total_inode_bytes);
printf("Directory table size %d bytes (%.2f Kbytes)\n",
directory_bytes, directory_bytes / 1024.0);
printf("\t%.2f%% of uncompressed directory table size (%d bytes)\n",
((float) directory_bytes / total_directory_bytes) * 100.0,
total_directory_bytes);
if(total_xattr_bytes) {
printf("Xattr table size %d bytes (%.2f Kbytes)\n",
xattr_bytes, xattr_bytes / 1024.0);
printf("\t%.2f%% of uncompressed xattr table size (%d bytes)\n",
((float) xattr_bytes / total_xattr_bytes) * 100.0,
total_xattr_bytes);
}
if(duplicate_checking)
printf("Number of duplicate files found %d\n", file_count -
dup_files);
else
printf("No duplicate files removed\n");
printf("Number of inodes %d\n", inode_count);
printf("Number of files %d\n", file_count);
if(!no_fragments)
printf("Number of fragments %d\n", fragments);
printf("Number of symbolic links %d\n", sym_count);
printf("Number of device nodes %d\n", dev_count);
printf("Number of fifo nodes %d\n", fifo_count);
printf("Number of socket nodes %d\n", sock_count);
printf("Number of directories %d\n", dir_count);
printf("Number of ids (unique uids + gids) %d\n", id_count);
printf("Number of uids %d\n", uid_count);
for(i = 0; i < id_count; i++) {
if(id_table[i]->flags & ISA_UID) {
struct passwd *user = getpwuid(id_table[i]->id);
printf("\t%s (%d)\n", user == NULL ? "unknown" :
user->pw_name, id_table[i]->id);
}
}
printf("Number of gids %d\n", guid_count);
for(i = 0; i < id_count; i++) {
if(id_table[i]->flags & ISA_GID) {
struct group *group = getgrgid(id_table[i]->id);
printf("\t%s (%d)\n", group == NULL ? "unknown" :
group->gr_name, id_table[i]->id);
}
}
}
int _parse_numberll(char *start, long long *res, int size, int base)
{
char *end;
long long number;
errno = 0; /* To distinguish success/failure after call */
number = strtoll(start, &end, base);
/*
* check for strtoll underflow or overflow in conversion, and other
* errors.
*/
if((errno == ERANGE && (number == LLONG_MIN || number == LLONG_MAX)) ||
(errno != 0 && number == 0))
return 0;
/* reject negative numbers as invalid */
if(number < 0)
return 0;
if(size) {
/*
* Check for multiplier and trailing junk.
* But first check that a number exists before the
* multiplier
*/
if(end == start)
return 0;
switch(end[0]) {
case 'g':
case 'G':
if(multiply_overflowll(number, 1073741824))
return 0;
number *= 1073741824;
if(end[1] != '\0')
/* trailing junk after multiplier, but
* allow it to be "bytes" */
if(strcmp(end + 1, "bytes"))
return 0;
break;
case 'm':
case 'M':
if(multiply_overflowll(number, 1048576))
return 0;
number *= 1048576;
if(end[1] != '\0')
/* trailing junk after multiplier, but
* allow it to be "bytes" */
if(strcmp(end + 1, "bytes"))
return 0;
break;
case 'k':
case 'K':
if(multiply_overflowll(number, 1024))
return 0;
number *= 1024;
if(end[1] != '\0')
/* trailing junk after multiplier, but
* allow it to be "bytes" */
if(strcmp(end + 1, "bytes"))
return 0;
break;
case '\0':
break;
default:
/* trailing junk after number */
return 0;
}
} else if(end[0] != '\0')
/* trailing junk after number */
return 0;
*res = number;
return 1;
}
int parse_numberll(char *start, long long *res, int size)
{
return _parse_numberll(start, res, size, 10);
}
int parse_number(char *start, int *res, int size)
{
long long number;
if(!_parse_numberll(start, &number, size, 10))
return 0;
/* check if long result will overflow signed int */
if(number > INT_MAX)
return 0;
*res = (int) number;
return 1;
}
int parse_number_unsigned(char *start, unsigned int *res, int size)
{
long long number;
if(!_parse_numberll(start, &number, size, 10))
return 0;
/* check if long result will overflow unsigned int */
if(number > UINT_MAX)
return 0;
*res = (unsigned int) number;
return 1;
}
int parse_num(char *arg, int *res)
{
return parse_number(arg, res, 0);
}
int parse_num_unsigned(char *arg, unsigned int *res)
{
return parse_number_unsigned(arg, res, 0);
}
int parse_mode(char *arg, mode_t *res)
{
long long number;
if(!_parse_numberll(arg, &number, 0, 8))
return 0;
if(number > 07777)
return 0;
*res = (mode_t) number;
return 1;
}
int get_physical_memory()
{
/*
* Long longs are used here because with PAE, a 32-bit
* machine can have more than 4GB of physical memory
*
* sysconf(_SC_PHYS_PAGES) relies on /proc being mounted.
* If it fails use sysinfo, if that fails return 0
*/
long long num_pages = sysconf(_SC_PHYS_PAGES);
long long page_size = sysconf(_SC_PAGESIZE);
int phys_mem;
if(num_pages == -1 || page_size == -1) {
struct sysinfo sys;
int res = sysinfo(&sys);
if(res == -1)
return 0;
num_pages = sys.totalram;
page_size = sys.mem_unit;
}
phys_mem = num_pages * page_size >> 20;
if(phys_mem < SQUASHFS_LOWMEM)
BAD_ERROR("Mksquashfs requires more physical memory than is "
"available!\n");
return phys_mem;
}
void check_usable_phys_mem(int total_mem)
{
/*
* We want to allow users to use as much of their physical
* memory as they wish. However, for practical reasons there are
* limits which need to be imposed, to protect users from themselves
* and to prevent people from using Mksquashfs as a DOS attack by using
* all physical memory. Mksquashfs uses memory to cache data from disk
* to optimise performance. It is pointless to ask it to use more
* than 75% of physical memory, as this causes thrashing and it is thus
* self-defeating.
*/
int mem = get_physical_memory();
mem = (mem >> 1) + (mem >> 2); /* 75% */
if(total_mem > mem && mem) {
ERROR("Total memory requested is more than 75%% of physical "
"memory.\n");
ERROR("Mksquashfs uses memory to cache data from disk to "
"optimise performance.\n");
ERROR("It is pointless to ask it to use more than this amount "
"of memory, as this\n");
ERROR("causes thrashing and it is thus self-defeating.\n");
BAD_ERROR("Requested memory size too large\n");
}
if(sizeof(void *) == 4 && total_mem > 2048) {
/*
* If we're running on a kernel with PAE or on a 64-bit kernel,
* then the 75% physical memory limit can still easily exceed
* the addressable memory by this process.
*
* Due to the typical kernel/user-space split (1GB/3GB, or
* 2GB/2GB), we have to conservatively assume the 32-bit
* processes can only address 2-3GB. So refuse if the user
* tries to allocate more than 2GB.
*/
ERROR("Total memory requested may exceed maximum "
"addressable memory by this process\n");
BAD_ERROR("Requested memory size too large\n");
}
}
int get_default_phys_mem()
{
/*
* get_physical_memory() relies on /proc being mounted.
* If it fails, issue a warning, and use
* SQUASHFS_LOWMEM / SQUASHFS_TAKE as default,
* and allow a larger value to be set with -mem.
*/
int mem = get_physical_memory();
if(mem == 0) {
mem = SQUASHFS_LOWMEM / SQUASHFS_TAKE;
ERROR("Warning: Cannot get size of physical memory, probably "
"because /proc is missing.\n");
ERROR("Warning: Defaulting to minimal use of %d Mbytes, use "
"-mem to set a better value,\n", mem);
ERROR("Warning: or fix /proc.\n");
} else
mem /= SQUASHFS_TAKE;
if(sizeof(void *) == 4 && mem > 640) {
/*
* If we're running on a kernel with PAE or on a 64-bit kernel,
* the default memory usage can exceed the addressable
* memory by this process.
* Due to the typical kernel/user-space split (1GB/3GB, or
* 2GB/2GB), we have to conservatively assume the 32-bit
* processes can only address 2-3GB. So limit the default
* usage to 640M, which gives room for other data.
*/
mem = 640;
}
return mem;
}
void calculate_queue_sizes(int mem, int *readq, int *fragq, int *bwriteq,
int *fwriteq)
{
*readq = mem / SQUASHFS_READQ_MEM;
*bwriteq = mem / SQUASHFS_BWRITEQ_MEM;
*fwriteq = mem / SQUASHFS_FWRITEQ_MEM;
*fragq = mem - *readq - *bwriteq - *fwriteq;
}
void open_log_file(char *filename)
{
log_fd=fopen(filename, "w");
if(log_fd == NULL)
BAD_ERROR("Failed to open log file \"%s\" because %s\n", filename, strerror(errno));
logging=TRUE;
}
void check_env_var()
{
char *time_string = getenv("SOURCE_DATE_EPOCH");
unsigned int time;
if(time_string != NULL) {
/*
* We cannot have both command-line options and environment
* variable trying to set the timestamp(s) at the same
* time. Semantically both are FORCE options which cannot be
* over-ridden elsewhere (otherwise they can't be relied on).
*
* So refuse to continue if both are set.
*/
if(mkfs_time_opt || all_time_opt)
BAD_ERROR("SOURCE_DATE_EPOCH and command line options "
"can't be used at the same time to set "
"timestamp(s)\n");
if(!parse_num_unsigned(time_string, &time)) {
ERROR("Env Var SOURCE_DATE_EPOCH has invalid time value\n");
EXIT_MKSQUASHFS();
}
all_time = mkfs_time = time;
all_time_opt = mkfs_time_opt = TRUE;
}
}
#define VERSION() \
printf("mksquashfs version 4.4 (2019/08/29)\n");\
printf("copyright (C) 2019 Phillip Lougher "\
"<phillip@squashfs.org.uk>\n\n"); \
printf("This program is free software; you can redistribute it and/or"\
"\n");\
printf("modify it under the terms of the GNU General Public License"\
"\n");\
printf("as published by the Free Software Foundation; either version "\
"2,\n");\
printf("or (at your option) any later version.\n\n");\
printf("This program is distributed in the hope that it will be "\
"useful,\n");\
printf("but WITHOUT ANY WARRANTY; without even the implied warranty "\
"of\n");\
printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the"\
"\n");\
printf("GNU General Public License for more details.\n");
int main(int argc, char *argv[])
{
struct stat buf, source_buf;
int res, i;
char *b, *root_name = NULL;
int keep_as_directory = FALSE;
squashfs_inode inode;
int readq;
int fragq;
int bwriteq;
int fwriteq;
int total_mem = get_default_phys_mem();
int progress = TRUE;
int force_progress = FALSE;
struct file_buffer **fragment = NULL;
if(argc > 1 && strcmp(argv[1], "-version") == 0) {
VERSION();
exit(0);
}
block_log = slog(block_size);
calculate_queue_sizes(total_mem, &readq, &fragq, &bwriteq, &fwriteq);
for(i = 1; i < argc && argv[i][0] != '-'; i++);
if(i < 3)
goto printOptions;
source_path = argv + 1;
source = i - 2;
/*
* Scan the command line for -comp xxx option, this is to ensure
* any -X compressor specific options are passed to the
* correct compressor
*/
for(; i < argc; i++) {
struct compressor *prev_comp = comp;
if(strcmp(argv[i], "-comp") == 0) {
if(++i == argc) {
ERROR("%s: -comp missing compression type\n",
argv[0]);
exit(1);
}
comp = lookup_compressor(argv[i]);
if(!comp->supported) {
ERROR("%s: Compressor \"%s\" is not supported!"
"\n", argv[0], argv[i]);
ERROR("%s: Compressors available:\n", argv[0]);
display_compressors("", COMP_DEFAULT);
exit(1);
}
if(prev_comp != NULL && prev_comp != comp) {
ERROR("%s: -comp multiple conflicting -comp"
" options specified on command line"
", previously %s, now %s\n", argv[0],
prev_comp->name, comp->name);
exit(1);
}
compressor_opt_parsed = 1;
} else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-root-becomes") == 0 ||
strcmp(argv[i], "-ef") == 0 ||
strcmp(argv[i], "-pf") == 0 ||
strcmp(argv[i], "-vaf") == 0 ||
strcmp(argv[i], "-log") == 0)
i++;
}
/*
* if no -comp option specified lookup default compressor. Note the
* Makefile ensures the default compressor has been built, and so we
* don't need to to check for failure here
*/
if(comp == NULL)
comp = lookup_compressor(COMP_DEFAULT);
for(i = source + 2; i < argc; i++) {
if(strcmp(argv[i], "-mkfs-time") == 0 ||
strcmp(argv[i], "-fstime") == 0) {
if((++i == argc) || !parse_num_unsigned(argv[i], &mkfs_time)) {
ERROR("%s: %s missing or invalid time value\n", argv[0], argv[i - 1]);
exit(1);
}
mkfs_time_opt = TRUE;
} else if(strcmp(argv[i], "-all-time") == 0) {
if((++i == argc) || !parse_num_unsigned(argv[i], &all_time)) {
ERROR("%s: %s missing or invalid time value\n", argv[0], argv[i - 1]);
exit(1);
}
all_time_opt = TRUE;
clamping = FALSE;
} else if(strcmp(argv[i], "-reproducible") == 0)
reproducible = TRUE;
else if(strcmp(argv[i], "-not-reproducible") == 0)
reproducible = FALSE;
else if(strcmp(argv[i], "-root-mode") == 0) {
if((++i == argc) || !parse_mode(argv[i], &root_mode)) {
ERROR("%s: -root-mode missing or invalid mode,"
" octal number <= 07777 expected\n", argv[0]);
exit(1);
}
root_mode_opt = TRUE;
} else if(strcmp(argv[i], "-log") == 0) {
if(++i == argc) {
ERROR("%s: %s missing log file\n",
argv[0], argv[i - 1]);
exit(1);
}
open_log_file(argv[i]);
} else if(strcmp(argv[i], "-action") == 0 ||
strcmp(argv[i], "-a") ==0) {
if(++i == argc) {
ERROR("%s: %s missing action\n",
argv[0], argv[i - 1]);
exit(1);
}
res = parse_action(argv[i], ACTION_LOG_NONE);
if(res == 0)
exit(1);
} else if(strcmp(argv[i], "-verbose-action") == 0 ||
strcmp(argv[i], "-va") ==0) {
if(++i == argc) {
ERROR("%s: %s missing action\n",
argv[0], argv[i - 1]);
exit(1);
}
res = parse_action(argv[i], ACTION_LOG_VERBOSE);
if(res == 0)
exit(1);
} else if(strcmp(argv[i], "-true-action") == 0 ||
strcmp(argv[i], "-ta") ==0) {
if(++i == argc) {
ERROR("%s: %s missing action\n",
argv[0], argv[i - 1]);
exit(1);
}
res = parse_action(argv[i], ACTION_LOG_TRUE);
if(res == 0)
exit(1);
} else if(strcmp(argv[i], "-false-action") == 0 ||
strcmp(argv[i], "-fa") ==0) {
if(++i == argc) {
ERROR("%s: %s missing action\n",
argv[0], argv[i - 1]);
exit(1);
}
res = parse_action(argv[i], ACTION_LOG_FALSE);
if(res == 0)
exit(1);
} else if(strcmp(argv[i], "-action-file") == 0 ||
strcmp(argv[i], "-af") ==0) {
if(++i == argc) {
ERROR("%s: %s missing filename\n", argv[0],
argv[i - 1]);
exit(1);
}
if(read_action_file(argv[i], ACTION_LOG_NONE) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-verbose-action-file") == 0 ||
strcmp(argv[i], "-vaf") ==0) {
if(++i == argc) {
ERROR("%s: %s missing filename\n", argv[0],
argv[i - 1]);
exit(1);
}
if(read_action_file(argv[i], ACTION_LOG_VERBOSE) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-true-action-file") == 0 ||
strcmp(argv[i], "-taf") ==0) {
if(++i == argc) {
ERROR("%s: %s missing filename\n", argv[0],
argv[i - 1]);
exit(1);
}
if(read_action_file(argv[i], ACTION_LOG_TRUE) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-false-action-file") == 0 ||
strcmp(argv[i], "-faf") ==0) {
if(++i == argc) {
ERROR("%s: %s missing filename\n", argv[0],
argv[i - 1]);
exit(1);
}
if(read_action_file(argv[i], ACTION_LOG_FALSE) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-comp") == 0)
/* parsed previously */
i++;
else if(strncmp(argv[i], "-X", 2) == 0) {
int args;
if(strcmp(argv[i] + 2, "help") == 0)
goto print_compressor_options;
args = compressor_options(comp, argv + i, argc - i);
if(args < 0) {
if(args == -1) {
ERROR("%s: Unrecognised compressor"
" option %s\n", argv[0],
argv[i]);
if(!compressor_opt_parsed)
ERROR("%s: Did you forget to"
" specify -comp?\n",
argv[0]);
print_compressor_options:
ERROR("%s: selected compressor \"%s\""
". Options supported: %s\n",
argv[0], comp->name,
comp->usage ? "" : "none");
if(comp->usage)
comp->usage();
}
exit(1);
}
i += args;
} else if(strcmp(argv[i], "-pf") == 0) {
if(++i == argc) {
ERROR("%s: -pf missing filename\n", argv[0]);
exit(1);
}
if(read_pseudo_file(argv[i]) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-p") == 0) {
if(++i == argc) {
ERROR("%s: -p missing pseudo file definition\n",
argv[0]);
exit(1);
}
if(read_pseudo_def(argv[i]) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-recover") == 0) {
if(++i == argc) {
ERROR("%s: -recover missing recovery file\n",
argv[0]);
exit(1);
}
read_recovery_data(argv[i], argv[source + 1]);
} else if(strcmp(argv[i], "-no-recovery") == 0)
recover = FALSE;
else if(strcmp(argv[i], "-wildcards") == 0) {
old_exclude = FALSE;
use_regex = FALSE;
} else if(strcmp(argv[i], "-regex") == 0) {
old_exclude = FALSE;
use_regex = TRUE;
} else if(strcmp(argv[i], "-no-sparse") == 0)
sparse_files = FALSE;
else if(strcmp(argv[i], "-no-progress") == 0)
progress = FALSE;
else if(strcmp(argv[i], "-progress") == 0)
force_progress = TRUE;
else if(strcmp(argv[i], "-no-exports") == 0)
exportable = FALSE;
else if(strcmp(argv[i], "-offset") == 0 || strcmp(argv[i], "-o") == 0) {
if((++i == argc) || !parse_numberll(argv[i], &start_offset, 1)) {
ERROR("%s: %s missing or invalid offset size\n", argv[0], argv[i - 1]);
exit(1);
}
} else if(strcmp(argv[i], "-processors") == 0) {
if((++i == argc) || !parse_num(argv[i], &processors)) {
ERROR("%s: -processors missing or invalid "
"processor number\n", argv[0]);
exit(1);
}
if(processors < 1) {
ERROR("%s: -processors should be 1 or larger\n",
argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-read-queue") == 0) {
if((++i == argc) || !parse_num(argv[i], &readq)) {
ERROR("%s: -read-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(readq < 1) {
ERROR("%s: -read-queue should be 1 megabyte or "
"larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-write-queue") == 0) {
if((++i == argc) || !parse_num(argv[i], &bwriteq)) {
ERROR("%s: -write-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(bwriteq < 2) {
ERROR("%s: -write-queue should be 2 megabytes "
"or larger\n", argv[0]);
exit(1);
}
fwriteq = bwriteq >> 1;
bwriteq -= fwriteq;
} else if(strcmp(argv[i], "-fragment-queue") == 0) {
if((++i == argc) || !parse_num(argv[i], &fragq)) {
ERROR("%s: -fragment-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(fragq < 1) {
ERROR("%s: -fragment-queue should be 1 "
"megabyte or larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-mem") == 0) {
long long number;
if((++i == argc) ||
!parse_numberll(argv[i], &number, 1)) {
ERROR("%s: -mem missing or invalid mem size\n",
argv[0]);
exit(1);
}
/*
* convert from bytes to Mbytes, ensuring the value
* does not overflow a signed int
*/
if(number >= (1LL << 51)) {
ERROR("%s: -mem invalid mem size\n", argv[0]);
exit(1);
}
total_mem = number / 1048576;
if(total_mem < (SQUASHFS_LOWMEM / SQUASHFS_TAKE)) {
ERROR("%s: -mem should be %d Mbytes or "
"larger\n", argv[0],
SQUASHFS_LOWMEM / SQUASHFS_TAKE);
exit(1);
}
calculate_queue_sizes(total_mem, &readq, &fragq,
&bwriteq, &fwriteq);
} else if(strcmp(argv[i], "-b") == 0) {
if(++i == argc) {
ERROR("%s: -b missing block size\n", argv[0]);
exit(1);
}
if(!parse_number(argv[i], &block_size, 1)) {
ERROR("%s: -b invalid block size\n", argv[0]);
exit(1);
}
if((block_log = slog(block_size)) == 0) {
ERROR("%s: -b block size not power of two or "
"not between 4096 and 1Mbyte\n",
argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-ef") == 0) {
if(++i == argc) {
ERROR("%s: -ef missing filename\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-no-duplicates") == 0)
duplicate_checking = FALSE;
else if(strcmp(argv[i], "-no-fragments") == 0)
no_fragments = TRUE;
else if(strcmp(argv[i], "-always-use-fragments") == 0)
always_use_fragments = TRUE;
else if(strcmp(argv[i], "-sort") == 0) {
if(++i == argc) {
ERROR("%s: -sort missing filename\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-all-root") == 0 ||
strcmp(argv[i], "-root-owned") == 0)
global_uid = global_gid = 0;
else if(strcmp(argv[i], "-force-uid") == 0) {
if(++i == argc) {
ERROR("%s: -force-uid missing uid or user\n",
argv[0]);
exit(1);
}
if((global_uid = strtoll(argv[i], &b, 10)), *b =='\0') {
if(global_uid < 0 || global_uid >
(((long long) 1 << 32) - 1)) {
ERROR("%s: -force-uid uid out of range"
"\n", argv[0]);
exit(1);
}
} else {
struct passwd *uid = getpwnam(argv[i]);
if(uid)
global_uid = uid->pw_uid;
else {
ERROR("%s: -force-uid invalid uid or "
"unknown user\n", argv[0]);
exit(1);
}
}
} else if(strcmp(argv[i], "-force-gid") == 0) {
if(++i == argc) {
ERROR("%s: -force-gid missing gid or group\n",
argv[0]);
exit(1);
}
if((global_gid = strtoll(argv[i], &b, 10)), *b =='\0') {
if(global_gid < 0 || global_gid >
(((long long) 1 << 32) - 1)) {
ERROR("%s: -force-gid gid out of range"
"\n", argv[0]);
exit(1);
}
} else {
struct group *gid = getgrnam(argv[i]);
if(gid)
global_gid = gid->gr_gid;
else {
ERROR("%s: -force-gid invalid gid or "
"unknown group\n", argv[0]);
exit(1);
}
}
} else if(strcmp(argv[i], "-noI") == 0 ||
strcmp(argv[i], "-noInodeCompression") == 0)
noI = TRUE;
else if(strcmp(argv[i], "-noId") == 0 ||
strcmp(argv[i], "-noIdTableCompression") == 0)
noId = TRUE;
else if(strcmp(argv[i], "-noD") == 0 ||
strcmp(argv[i], "-noDataCompression") == 0)
noD = TRUE;
else if(strcmp(argv[i], "-noF") == 0 ||
strcmp(argv[i], "-noFragmentCompression") == 0)
noF = TRUE;
else if(strcmp(argv[i], "-noX") == 0 ||
strcmp(argv[i], "-noXattrCompression") == 0)
noX = TRUE;
else if(strcmp(argv[i], "-no-xattrs") == 0)
no_xattrs = TRUE;
else if(strcmp(argv[i], "-xattrs") == 0)
no_xattrs = FALSE;
else if(strcmp(argv[i], "-nopad") == 0)
nopad = TRUE;
else if(strcmp(argv[i], "-info") == 0)
silent = FALSE;
else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-noappend") == 0)
delete = TRUE;
else if(strcmp(argv[i], "-quiet") == 0)
quiet = TRUE;
else if(strcmp(argv[i], "-keep-as-directory") == 0)
keep_as_directory = TRUE;
else if(strcmp(argv[i], "-exit-on-error") == 0)
exit_on_error = TRUE;
else if(strcmp(argv[i], "-root-becomes") == 0) {
if(++i == argc) {
ERROR("%s: -root-becomes: missing name\n",
argv[0]);
exit(1);
}
root_name = argv[i];
} else if(strcmp(argv[i], "-version") == 0) {
VERSION();
} else {
ERROR("%s: invalid option\n\n", argv[0]);
printOptions:
ERROR("SYNTAX:%s source1 source2 ... dest [options] "
"[-e list of exclude\ndirs/files]\n", argv[0]);
ERROR("\nFilesystem build options:\n");
ERROR("-comp <comp>\t\tselect <comp> compression\n");
ERROR("\t\t\tCompressors available:\n");
display_compressors("\t\t\t", COMP_DEFAULT);
ERROR("-b <block_size>\t\tset data block to "
"<block_size>. Default 128 Kbytes\n");
ERROR("\t\t\tOptionally a suffix of K or M can be"
" given to specify\n\t\t\tKbytes or Mbytes"
" respectively\n");
ERROR("-reproducible\t\tbuild images that are reproducible"
REP_STR "\n");
ERROR("-not-reproducible\tbuild images that are not reproducible"
NOREP_STR "\n");
ERROR("-mkfs-time <time>\tset mkfs time to <time> which is an unsigned int\n");
ERROR("-fstime <time>\t\tsynonym for mkfs-time\n");
ERROR("-all-time <time>\tset all inode times to <time> which is an unsigned int\n");
ERROR("-no-exports\t\tdon't make the filesystem "
"exportable via NFS\n");
ERROR("-no-sparse\t\tdon't detect sparse files\n");
ERROR("-no-xattrs\t\tdon't store extended attributes"
NOXOPT_STR "\n");
ERROR("-xattrs\t\t\tstore extended attributes" XOPT_STR
"\n");
ERROR("-noI\t\t\tdo not compress inode table\n");
ERROR("-noId\t\t\tdo not compress the uid/gid table"
" (implied by -noI)\n");
ERROR("-noD\t\t\tdo not compress data blocks\n");
ERROR("-noF\t\t\tdo not compress fragment blocks\n");
ERROR("-noX\t\t\tdo not compress extended "
"attributes\n");
ERROR("-no-fragments\t\tdo not use fragments\n");
ERROR("-always-use-fragments\tuse fragment blocks for "
"files larger than block size\n");
ERROR("-no-duplicates\t\tdo not perform duplicate "
"checking\n");
ERROR("-all-root\t\tmake all files owned by root\n");
ERROR("-root-mode <mode>\tset root directory permissions to octal <mode>\n");
ERROR("-force-uid <uid>\tset all file uids to <uid>\n");
ERROR("-force-gid <gid>\tset all file gids to <gid>\n");
ERROR("-nopad\t\t\tdo not pad filesystem to a multiple "
"of 4K\n");
ERROR("-keep-as-directory\tif one source directory is "
"specified, create a root\n");
ERROR("\t\t\tdirectory containing that directory, "
"rather than the\n");
ERROR("\t\t\tcontents of the directory\n");
ERROR("\nFilesystem filter options:\n");
ERROR("-p <pseudo-definition>\tAdd pseudo file "
"definition\n");
ERROR("-pf <pseudo-file>\tAdd list of pseudo file "
"definitions\n");
ERROR("\t\t\tPseudo definitions should be of the "
"format\n");
ERROR("\t\t\t\tfilename d mode uid gid\n");
ERROR("\t\t\t\tfilename m mode uid gid\n");
ERROR("\t\t\t\tfilename b mode uid gid major minor\n");
ERROR("\t\t\t\tfilename c mode uid gid major minor\n");
ERROR("\t\t\t\tfilename f mode uid gid command\n");
ERROR("\t\t\t\tfilename s mode uid gid symlink\n");
ERROR("-sort <sort_file>\tsort files according to "
"priorities in <sort_file>. One\n");
ERROR("\t\t\tfile or dir with priority per line. "
"Priority -32768 to\n");
ERROR("\t\t\t32767, default priority 0\n");
ERROR("-ef <exclude_file>\tlist of exclude dirs/files."
" One per line\n");
ERROR("-wildcards\t\tAllow extended shell wildcards "
"(globbing) to be used in\n\t\t\texclude "
"dirs/files\n");
ERROR("-regex\t\t\tAllow POSIX regular expressions to "
"be used in exclude\n\t\t\tdirs/files\n");
ERROR("\nFilesystem append options:\n");
ERROR("-noappend\t\tdo not append to existing "
"filesystem\n");
ERROR("-root-becomes <name>\twhen appending source "
"files/directories, make the\n");
ERROR("\t\t\toriginal root become a subdirectory in "
"the new root\n");
ERROR("\t\t\tcalled <name>, rather than adding the new "
"source items\n");
ERROR("\t\t\tto the original root\n");
ERROR("\nMksquashfs runtime options:\n");
ERROR("-version\t\tprint version, licence and "
"copyright message\n");
ERROR("-exit-on-error\t\ttreat normally ignored errors "
"as fatal\n");
ERROR("-recover <name>\t\trecover filesystem data "
"using recovery file <name>\n");
ERROR("-no-recovery\t\tdon't generate a recovery "
"file\n");
ERROR("-quiet\t\t\tno verbose output\n");
ERROR("-info\t\t\tprint files written to filesystem\n");
ERROR("-no-progress\t\tdon't display the progress "
"bar\n");
ERROR("-progress\t\tdisplay progress bar when using "
"the -info option\n");
ERROR("-processors <number>\tUse <number> processors."
" By default will use number of\n");
ERROR("\t\t\tprocessors available\n");
ERROR("-mem <size>\t\tUse <size> physical memory. "
"Currently set to %dM\n", total_mem);
ERROR("\t\t\tOptionally a suffix of K, M or G can be"
" given to specify\n\t\t\tKbytes, Mbytes or"
" Gbytes respectively\n");
ERROR("\nMiscellaneous options:\n");
ERROR("-root-owned\t\talternative name for -all-root"
"\n");
ERROR("-offset <offset>\tSkip <offset> bytes at the "
"beginning of <dest>.\n");
ERROR("\t\t\tOptionally a suffix of K, M or G can be"
" given to specify\n\t\t\tKbytes, Mbytes or"
" Gbytes respectively.\n");
ERROR("\t\t\tDefault 0 bytes.\n");
ERROR("-o <offset>\t\tsynonym for -offset\n");
ERROR("-noInodeCompression\talternative name for -noI"
"\n");
ERROR("-noIdTableCompression\talternative name for -noId"
"\n");
ERROR("-noDataCompression\talternative name for -noD"
"\n");
ERROR("-noFragmentCompression\talternative name for "
"-noF\n");
ERROR("-noXattrCompression\talternative name for "
"-noX\n");
ERROR("\n-Xhelp\t\t\tprint compressor options for"
" selected compressor\n");
ERROR("\nCompressors available and compressor specific "
"options:\n");
display_compressor_usage(COMP_DEFAULT);
exit(1);
}
}
check_env_var();
/*
* The -noI option implies -noId for backwards compatibility, so reset noId
* if both have been specified
*/
if(noI && noId)
noId = FALSE;
/*
* Some compressors may need the options to be checked for validity
* once all the options have been processed
*/
res = compressor_options_post(comp, block_size);
if(res)
EXIT_MKSQUASHFS();
/*
* If the -info option has been selected then disable the
* progress bar unless it has been explicitly enabled with
* the -progress option
*/
if(!silent)
progress = force_progress;
#ifdef SQUASHFS_TRACE
/*
* Disable progress bar if full debug tracing is enabled.
* The progress bar in this case just gets in the way of the
* debug trace output
*/
progress = FALSE;
#endif
for(i = 0; i < source; i++)
if(lstat(source_path[i], &source_buf) == -1) {
fprintf(stderr, "Cannot stat source directory \"%s\" "
"because %s\n", source_path[i],
strerror(errno));
EXIT_MKSQUASHFS();
}
destination_file = argv[source + 1];
if(stat(argv[source + 1], &buf) == -1) {
if(errno == ENOENT) { /* Does not exist */
fd = open(argv[source + 1], O_CREAT | O_TRUNC | O_RDWR,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
if(fd == -1) {
perror("Could not create destination file");
exit(1);
}
delete = TRUE;
} else {
perror("Could not stat destination file");
exit(1);
}
} else {
if(S_ISBLK(buf.st_mode)) {
if((fd = open(argv[source + 1], O_RDWR)) == -1) {
perror("Could not open block device as "
"destination");
exit(1);
}
block_device = 1;
} else if(S_ISREG(buf.st_mode)) {
fd = open(argv[source + 1], (delete ? O_TRUNC : 0) |
O_RDWR);
if(fd == -1) {
perror("Could not open regular file for "
"writing as destination");
exit(1);
}
}
else {
ERROR("Destination not block device or regular file\n");
exit(1);
}
}
/*
* process the exclude files - must be done afer destination file has
* been possibly created
*/
for(i = source + 2; i < argc; i++)
if(strcmp(argv[i], "-ef") == 0)
/*
* Note presence of filename arg has already
* been checked
*/
process_exclude_file(argv[++i]);
else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-root-becomes") == 0 ||
strcmp(argv[i], "-sort") == 0 ||
strcmp(argv[i], "-pf") == 0 ||
strcmp(argv[i], "-af") == 0 ||
strcmp(argv[i], "-vaf") == 0 ||
strcmp(argv[i], "-comp") == 0 ||
strcmp(argv[i], "-log") == 0)
i++;
if(i != argc) {
if(++i == argc) {
ERROR("%s: -e missing arguments\n", argv[0]);
EXIT_MKSQUASHFS();
}
while(i < argc)
if(old_exclude)
old_add_exclude(argv[i++]);
else
add_exclude(argv[i++]);
}
/* process the sort files - must be done afer the exclude files */
for(i = source + 2; i < argc; i++)
if(strcmp(argv[i], "-sort") == 0) {
int res = read_sort_file(argv[++i], source,
source_path);
if(res == FALSE)
BAD_ERROR("Failed to read sort file\n");
sorted ++;
} else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-root-becomes") == 0 ||
strcmp(argv[i], "-ef") == 0 ||
strcmp(argv[i], "-pf") == 0 ||
strcmp(argv[i], "-af") == 0 ||
strcmp(argv[i], "-vaf") == 0 ||
strcmp(argv[i], "-comp") == 0 ||
strcmp(argv[i], "-log") == 0)
i++;
if(!delete) {
comp = read_super(fd, &sBlk, argv[source + 1]);
if(comp == NULL) {
ERROR("Failed to read existing filesystem - will not "
"overwrite - ABORTING!\n");
ERROR("To force Mksquashfs to write to this block "
"device or file use -noappend\n");
EXIT_MKSQUASHFS();
}
block_log = slog(block_size = sBlk.block_size);
noI = SQUASHFS_UNCOMPRESSED_INODES(sBlk.flags);
noD = SQUASHFS_UNCOMPRESSED_DATA(sBlk.flags);
noF = SQUASHFS_UNCOMPRESSED_FRAGMENTS(sBlk.flags);
noX = SQUASHFS_UNCOMPRESSED_XATTRS(sBlk.flags);
noId = SQUASHFS_UNCOMPRESSED_IDS(sBlk.flags);
no_fragments = SQUASHFS_NO_FRAGMENTS(sBlk.flags);
always_use_fragments = SQUASHFS_ALWAYS_FRAGMENTS(sBlk.flags);
duplicate_checking = SQUASHFS_DUPLICATES(sBlk.flags);
exportable = SQUASHFS_EXPORTABLE(sBlk.flags);
no_xattrs = SQUASHFS_NO_XATTRS(sBlk.flags);
comp_opts = SQUASHFS_COMP_OPTS(sBlk.flags);
}
initialise_threads(readq, fragq, bwriteq, fwriteq, delete,
destination_file);
res = compressor_init(comp, &stream, SQUASHFS_METADATA_SIZE, 0);
if(res)
BAD_ERROR("compressor_init failed\n");
if(delete) {
int size;
void *comp_data = compressor_dump_options(comp, block_size,
&size);
if(!quiet)
printf("Creating %d.%d filesystem on %s, block size %d.\n",
SQUASHFS_MAJOR, SQUASHFS_MINOR,
argv[source + 1], block_size);
/*
* store any compressor specific options after the superblock,
* and set the COMP_OPT flag to show that the filesystem has
* compressor specfic options
*/
if(comp_data) {
unsigned short c_byte = size | SQUASHFS_COMPRESSED_BIT;
SQUASHFS_INSWAP_SHORTS(&c_byte, 1);
write_destination(fd, sizeof(struct squashfs_super_block),
sizeof(c_byte), &c_byte);
write_destination(fd, sizeof(struct squashfs_super_block) +
sizeof(c_byte), size, comp_data);
bytes = sizeof(struct squashfs_super_block) + sizeof(c_byte)
+ size;
comp_opts = TRUE;
} else
bytes = sizeof(struct squashfs_super_block);
} else {
unsigned int last_directory_block, inode_dir_offset,
inode_dir_file_size, root_inode_size,
inode_dir_start_block, uncompressed_data,
compressed_data, inode_dir_inode_number,
inode_dir_parent_inode;
unsigned int root_inode_start =
SQUASHFS_INODE_BLK(sBlk.root_inode),
root_inode_offset =
SQUASHFS_INODE_OFFSET(sBlk.root_inode);
if((bytes = read_filesystem(root_name, fd, &sBlk, &inode_table,
&data_cache, &directory_table,
&directory_data_cache, &last_directory_block,
&inode_dir_offset, &inode_dir_file_size,
&root_inode_size, &inode_dir_start_block,
&file_count, &sym_count, &dev_count, &dir_count,
&fifo_count, &sock_count, &total_bytes,
&total_inode_bytes, &total_directory_bytes,
&inode_dir_inode_number,
&inode_dir_parent_inode, add_old_root_entry,
&fragment_table, &inode_lookup_table)) == 0) {
ERROR("Failed to read existing filesystem - will not "
"overwrite - ABORTING!\n");
ERROR("To force Mksquashfs to write to this block "
"device or file use -noappend\n");
EXIT_MKSQUASHFS();
}
if((append_fragments = fragments = sBlk.fragments)) {
fragment_table = realloc((char *) fragment_table,
((fragments + FRAG_SIZE - 1) & ~(FRAG_SIZE - 1))
* sizeof(struct squashfs_fragment_entry));
if(fragment_table == NULL)
BAD_ERROR("Out of memory in save filesystem state\n");
}
printf("Appending to existing %d.%d filesystem on %s, block "
"size %d\n", SQUASHFS_MAJOR, SQUASHFS_MINOR, argv[source + 1],
block_size);
printf("All -b, -noI, -noD, -noF, -noX, -noId, -no-duplicates, "
"-no-fragments,\n-always-use-fragments, -exportable and "
"-comp options ignored\n");
printf("\nIf appending is not wanted, please re-run with "
"-noappend specified!\n\n");
compressed_data = (inode_dir_offset + inode_dir_file_size) &
~(SQUASHFS_METADATA_SIZE - 1);
uncompressed_data = (inode_dir_offset + inode_dir_file_size) &
(SQUASHFS_METADATA_SIZE - 1);
/* save original filesystem state for restoring ... */
sfragments = fragments;
sbytes = bytes;
sinode_count = sBlk.inodes;
scache_bytes = root_inode_offset + root_inode_size;
sdirectory_cache_bytes = uncompressed_data;
sdata_cache = malloc(scache_bytes);
if(sdata_cache == NULL)
BAD_ERROR("Out of memory in save filesystem state\n");
sdirectory_data_cache = malloc(sdirectory_cache_bytes);
if(sdirectory_data_cache == NULL)
BAD_ERROR("Out of memory in save filesystem state\n");
memcpy(sdata_cache, data_cache, scache_bytes);
memcpy(sdirectory_data_cache, directory_data_cache +
compressed_data, sdirectory_cache_bytes);
sinode_bytes = root_inode_start;
stotal_bytes = total_bytes;
stotal_inode_bytes = total_inode_bytes;
stotal_directory_bytes = total_directory_bytes +
compressed_data;
sfile_count = file_count;
ssym_count = sym_count;
sdev_count = dev_count;
sdir_count = dir_count + 1;
sfifo_count = fifo_count;
ssock_count = sock_count;
sdup_files = dup_files;
sid_count = id_count;
write_recovery_data(&sBlk);
save_xattrs();
appending = TRUE;
/*
* set the filesystem state up to be able to append to the
* original filesystem. The filesystem state differs depending
* on whether we're appending to the original root directory, or
* if the original root directory becomes a sub-directory
* (root-becomes specified on command line, here root_name !=
* NULL)
*/
inode_bytes = inode_size = root_inode_start;
directory_size = last_directory_block;
cache_size = root_inode_offset + root_inode_size;
directory_cache_size = inode_dir_offset + inode_dir_file_size;
if(root_name) {
sdirectory_bytes = last_directory_block;
sdirectory_compressed_bytes = 0;
root_inode_number = inode_dir_parent_inode;
inode_no = sBlk.inodes + 2;
directory_bytes = last_directory_block;
directory_cache_bytes = uncompressed_data;
memmove(directory_data_cache, directory_data_cache +
compressed_data, uncompressed_data);
cache_bytes = root_inode_offset + root_inode_size;
add_old_root_entry(root_name, sBlk.root_inode,
inode_dir_inode_number, SQUASHFS_DIR_TYPE);
total_directory_bytes += compressed_data;
dir_count ++;
} else {
sdirectory_compressed_bytes = last_directory_block -
inode_dir_start_block;
sdirectory_compressed =
malloc(sdirectory_compressed_bytes);
if(sdirectory_compressed == NULL)
BAD_ERROR("Out of memory in save filesystem "
"state\n");
memcpy(sdirectory_compressed, directory_table +
inode_dir_start_block,
sdirectory_compressed_bytes);
sdirectory_bytes = inode_dir_start_block;
root_inode_number = inode_dir_inode_number;
inode_no = sBlk.inodes + 1;
directory_bytes = inode_dir_start_block;
directory_cache_bytes = inode_dir_offset;
cache_bytes = root_inode_offset;
}
inode_count = file_count + dir_count + sym_count + dev_count +
fifo_count + sock_count;
}
if(path)
paths = add_subdir(paths, path);
dump_actions();
dump_pseudos();
if(delete && !keep_as_directory && source == 1 &&
S_ISDIR(source_buf.st_mode))
dir_scan(&inode, source_path[0], scan1_readdir, progress);
else if(!keep_as_directory && source == 1 &&
S_ISDIR(source_buf.st_mode))
dir_scan(&inode, source_path[0], scan1_single_readdir, progress);
else
dir_scan(&inode, "", scan1_encomp_readdir, progress);
sBlk.root_inode = inode;
sBlk.inodes = inode_count;
sBlk.s_magic = SQUASHFS_MAGIC;
sBlk.s_major = SQUASHFS_MAJOR;
sBlk.s_minor = SQUASHFS_MINOR;
sBlk.block_size = block_size;
sBlk.block_log = block_log;
sBlk.flags = SQUASHFS_MKFLAGS(noI, noD, noF, noX, noId, no_fragments,
always_use_fragments, duplicate_checking, exportable,
no_xattrs, comp_opts);
sBlk.mkfs_time = mkfs_time_opt ? mkfs_time : time(NULL);
disable_info();
while((fragment = get_frag_action(fragment)))
write_fragment(*fragment);
if(!reproducible)
unlock_fragments();
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
while(fragments_outstanding) {
pthread_mutex_unlock(&fragment_mutex);
pthread_testcancel();
sched_yield();
pthread_mutex_lock(&fragment_mutex);
}
pthread_cleanup_pop(1);
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
set_progressbar_state(FALSE);
write_filesystem_tables(&sBlk, nopad);
if(logging)
fclose(log_fd);
return 0;
}